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Abstract. For populations undergoing mass selection, 
previous studies have shown that the rate of inbreeding 
is directly related to the mean and variance of long- 
term contributions from ancestors to descendants, and 
thus prediction of the rate of inbreeding can be 
achieved via the prediction of long-term contributions. 
In this paper, it is shown that the same relationship 
between the rate of inbreeding and long-term contribu- 
tions is found when selection is based on an index of 
individual and sib records (index selection) and where 
sib records may be influenced by a common environ- 
ment. In these situations, rates of inbreeding may be 
considerably higher than under mass selection. An 
expression for the rate of inbreeding is derived for 
populations undergoing index selection based on vari- 
ances of (one-generation) family size and incorporating 
the concept of long-term selective advantage. When the 
mating structure is hierarchical, and when half-sib 
records are included in the index, the correlation be- 
tween parental breeding values and the index values of 
their offspring is higher for male parents than female 
parents. This introduces an important asymmetry be- 
tween the contributions of male and female ancestors 
to the evolution of inbreeding which is not present 
when selection is based on individual and/or full-sib 
records alone. The prediction equation for index selec- 
tion accounts for this asymmetry. The prediction is 
compared to rates of inbreeding calculated from simu- 
lation. The prediction is good when family size is small 
relative to the number selected. The reasons for over- 
prediction in other situations are discussed. 
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Introduction 

The mean and variance of long-term genetic contribu- 
tions from ancestors (in a closed population) can be 
related to the rate of inbreeding (Wray and Thompson 
1990). After several generations, the long-term contri- 
butions from an ancestor stabilise and are the same to 
all individuals born into the population, with the 
values differing between ancestors. The mean simply 
reflects the constraint of the number of ancestors and 
the parents used in each generation and is the same 
whether or not selection is practised. The variance, 
however, is increased by selection. 

Offspring of parents who are genetically superior 
for the trait under selection are more likely to be 
selected than the offspring of genetically-average or 
inferior parents. The parents are said to confer a selec- 
tive advantage to their offspring. When parents are 
selected at random, the sampling of parents is indepen- 
dent of the sampling process of the previous generation. 
However, when parents are selected on a heritable 
trait, the selective advantage is inherited, and is con- 
veyed, in part, from parent to offspring. Thus the 
breeding value of an ancestor has influences on selec- 
tion decisions in all subsequent generations. Wray 
etal.  (1990) introduced the terminology of one- 
generation, two-generation and long-term selective 
advantage, referring to that conveyed from parent to 
offspring, grandparent to grandoffspring, and ancestor 
to (distant) descendant. They reviewed different 
methods to predict the rate of inbreeding which can be 



classified in the same way, according to the number of 
generations of selective advantage they attempt to 
incorporate. Only the methods of Robertson (1961), 
W r a y  a n d  T h o m p s o n  (1990) a n d  W o o l l i a m s  et al. 
(1993) are l o n g - t e r m  methods .  

F o r  p o p u l a t i o n s  u n d e r g o i n g  mass  select ion W r a y  
a n d  T h o m p s o n  (1990) p resen ted  a recurs ive  a l g o r i t hm  
to predic t  the  m e a n  a n d  va r i ance  of l o n g - t e r m  cont r i -  
b u t i o n s  a n d  hence  to predic t  the rate  of inbreed ing .  
W o o l l i a m s  et al. (1993) modi f i ed  c o m p o n e n t s  of the  
p red ic t i on  a n d  p resen ted  a n  explici t  express ion  for the 
l o n g - t e r m  selective a d v a n t a g e  a n d  the rate of i nb reed -  
ing. Fu r the r ,  they showed  tha t  the  i m p o r t a n t  t e rms  of 
the  p red ic t i on  can  be re la ted  b a c k  to the e q u a t i o n s  of 
La t t e r  (1959) a n d  Hi l l  (1979), wi th  the a d d i t i o n  of a 
t e rm  desc r ib ing  the c o n t r i b u t i o n  of the expected  long-  
t e rm  selective advan tage .  

The  p resen t  p ap e r  is c o n c e r n e d  p r imar i l y  wi th  
the p red ic t i on  of the rate  of i n b r e e d i n g  w h e n  select ion 
is based  o n  a n  index  of records  of a n  i n d i v i d u a l  a n d  
its co l la te ra l  relat ives a n d  where  sib records  m a y  
be in f luenced  by  a c o m m o n  e n v i r o n m e n t .  I n  these 
s i tua t ions ,  the rate  of i n b r e e d i n g  m a y  be cons ider -  
ab ly  h igher  t h a n  u n d e r  mass  selection.  Just i f ied by  
the  fo rma l  d e r i v a t i o n  of  W o o l l i a m s  et al. (1993), this 
pape r  p resen t s  a m o r e  in tu i t ive  de r iva t ion  which  
h ighl ights  m o r e  expl ici t ly  the r e l a t ionsh ip  b e tween  
the l o n g - t e r m  c o n t r i b u t i o n  m e t h o d  of W r a y  a n d  
T h o m p s o n  (1990) wi th  tha t  of  R o b e r t s o n  (1961), on  
the one  hand ,  a n d  La t t e r  (1959) a n d  Hil l  (1979), o n  
the other.  

M e t h o d s  

Definition of  population structure and index parameters 

Throughout, conventions on notation follow as closely as pos- 
sible those of Woolliams et al., (1993). The population structure 
considered is one of hierarchical random mating of F females 
with M males (M < F) with discrete generations. Generation 1 is 
produced by the mating structure from an unrelated, unselected 
base population. The term 'ancestors' is used to refer to individ- 
uals born and selected in generation 1. Each female produces a 
family of n offspring comprising n I males and n;  females 
(n = 2nl). Each male has n,, offspring of each sex (n,. = n I F / M  ). 
X, Y or W and subscripts x, y or w may be used to specify a single 
sex, either male or female e.g., X = M or F, nx -- n,, or n j.. T is 
used to denote the total number of offspring of each sex born 
each generation, T = Xnx. The proportion selected is p after 
truncation at the standardised normal deviate v, p = ~(v) with 
the corresponding normal ordinate z = q~ (v), where @ (.) and th(.) 
represent the cumulative and probability density functions of the 
normal distribution. The standardised selection intensity is 
i=  z/p and the variance reduction factor is k = i ( i -  v). When 
these terms have subscripts they are the values for the sex of 
animals indicated by the subscript, and without subscripts they 
are the average of the sexes. 

Assuming an infinitesimal model of gene effects, the total 
2 genetic variance of individuals born in generation t is 6a,t, whlch 
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can be decomposed as, 

2 2 2 2 
GA,t = GAin,t- 1 ~- G A f , t -  1 4- GAw 

2 2 1 where Gain,t- 1 and G A f , t -  1 are ~ of the genetic variances between 
sires and dams born and selected in generation t - 1, a 2 . is the 
within-family genetic variance, and a~m,o =a~y,0 =~tr~w = 
1 2 ~aA,O. These parameters are used only for t _< 2, and so reductions 
in genetic variance due to inbreeding are ignored�9 The pheno- 
typic variance in  generation t is, 

2 2 2 2 
Gp, t = GA, t ~- G C ~- G E 

where a~ and cr 2 are the common environmental variance of 
full-sibs and the error variance respectively. Heritability in gen- 

2 2 2 eration t is defined as ht = ~A,jap, t. 
Selection is assumed to be based on an index (In) of individ- 

ual record (P), the mean of n full-sib records (including individ- 
ual) (FD), and the mean of (F/M)_n half-sib (including tile 
individual and its full-sibs) records (Pn), 

I n = fll(P - riD) + flz(PD -- P , )  + flaP,, 

where /31, fl2, fla are selection index weights. The index is 
written in this way because C o v ( P -  P, ,  P v -  t 5 ) =  C o v ( P -  
PD, Pn) = Cov(PF -- Pn, P , )  = 0. P is defined so that the mean 
of P each generation is zero. Selection index weights are 
assumed to be constant throughout and are derived so that the 
index is optimum in the first generation: Cov(A, I) = V(I), where 
A is the individual's breeding value. This assumption is adopted 
for simplicity and for comparison of prediction results with 
simulation results later; the theory can be developed ana- 
logously without this assumption (Woolliams and Wray, 
in preparation). The selection index weights each generation 
are, 

2 Gaf ,o  ~- G 
GAw n 

f l ~ -  ~ ~, f l~--  
GAw 4.- G E 2 2 1 2 2 

and 

2 M [  2 

Before selection the variance of the indices of individuals born in 
generation t is, 

(1) 

Before selection Cov(A of sex x parent, 1.  of offspring)t = 
2 2%,aAx,t-1 for offspring born in generation t, where 

~'m = fl3 and zy = f12(1 -- M/F)  + fla(M/F). (2) 

In the absence of selection Coy(In of sex x parent, I n of 
�9 1 2 offsprmg) = gzxtrc0. 
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The correlations between indices of two full-sibs (PD,t) and 
two half-sibs (Pint) are 

�9 a A f , t -  1 + ffC -~ (0"2w ~- 

M 2 + fl~[a2 . . . .  1 +  _ff.[aAf,t_l+ 2 1 2  2 7 7 - )  2 

(3) 

and 

( 2 M [ -  2 2 1 2 ] 

2 2 M 2 +fl3[fAm,t- l  +'- t~[fAf , t - l  + 2 1 2 2 7 ] )  2 

(4) 

The correlation between indices of two full-sibs due to the 
breeding values of the dam is Ps,t and the correlation between 
indices of two full-sibs or two half-sibs due to the breeding value 
of their sire is P,.,t, where 

2 2 - 2  
P~,~ = ~ f A~,~- 1 fI ,~ �9 (5) 

Two other selection indices are considered: an index of 
individual record and full-sib mean, I D = f i~ (P-  fro)+ flel~D, 
where fl~ is the same as in I n and 

2 2 1 2 
GAm,O "~- f Af,O "+" --law n 

2 2 2 , 11 2 , 2~' 
ff Am,O -]- f af ,o ~- (7C ~- --((TAw "l- fiE) n 

and an index of individual record only (mass selection), I e = fll P, 
where fl~ = h 2. In the methodology that  follows, derivations 
are made for index I n. The results are also appropriate for I o if in 
IH, f13 is set equal to f12 of I D and for I e if in In, f13 and flz are 

2 set equal to fl~ of Ie. For each index a~,t must be calculated 
appropriately. 

Simplification of  the method of  Wray and Thompson (1990) 

Rate of  inbreeding from long-term contributions. Under  the as- 
sumption of constant rate of inbreeding each year, Wray and 
Thompson (1990) presented an expression for the rate of inbreed- 
ing (AF) appropriate for selected populations, 

1 M+F 2 - -  rj,~ AF ~ 4(M + F)  2 ~ (6) j = l  

where rj,t is the total additive genetic contribution of ancestor j 
born  in generation 1 to its descendants born in generation t. 
Alternatively, r J ( M  + F) is the additive genetic relationship 
between the Mendelian sampling term that  ancestor j received 
and each descendant, i.e., the genetic relationship between ances- 
tor and descendant which cannot  be traced to the base gener- 
ation (the parents of the ancestors). Appendix 1 shows that  this 
expression can be partit ioned by sex of ancestor and by sex of 
descendant to give, 

~ f  l f l [ ~ - ~ r 2 m m ~  ~ 2  ] 
~ ~ ) T ~ I  ~ J( ), -[- rj(fm),~176 

L ~'~ L j = I  j = l  

2 M 

rj(mf),o3 + rj(ff),ce (7) 
- ~  j j=1 

where r:(xy),t is the long-term contribution of ancestor j of sex 
x to its descendants of sex y. Terms rj(:~y),t have mean #rtxy),t, 

2 and covariance between male and female v a r i a n c e  ffr(xy),t 
descendants of art . . . .  s),t. Therefore, an equivalen expression can 
be written, 

1 f a z 
% 

2 [ ~ M 
+ L T I  [..(oo),| + a,( . . . .  . , J  

I 

2 2 
+ T Eu~(,~:>.~ + a , ( m : ) . ~ ]  

{ 2 ~- fr(ff),c~] 
1 

2 F + [~][#r(fm),~#r(ff),~o+~Tr(fm,ff),~] 

2 2 
+ ~ [~,(s~),~ + f,(sm),~] �9 (8) 

Mean of  Iong term contributions. The mean #,(xy),t = E [r j(xy)a j is 
an expectation conditional on the deviation of the breeding value 
of ancestor j over that of its selected contemporaries of Aj(x), such 
that  E[Aj(~)] = 0 and V[Aj(x) ] = 4aA~.12 (which is the variance 
about  the mean of all selected ancestors of sex x, evaluated in 
Appendix 2). Assuming a linear model, the mean can be ex- 
pressed as 

= - 2 -  t-2 ~ ] f ' ~ Y  1 t-~ 

(Wray and Thompson 1990). The term 2t-2b~,y,t can be inter- 
preted as the  regression coefficient of the number of distinct 
pedigree pathways to descendants of sex y in generation t on the 
breeding values of their ancestors of sex x. The term (�89 
represents the relationship between ancestor and descendant 
along a single pathway. When selection is at random bxy,t is zero. 
Under  selection, b~y,: is the one-generation selective advantage 
and b~r,~ is the long-term selective advantage. 

Under  mass selection Wray and Thompson (1990) showed 
that, 

1 1 Y 
b~Y'2 ~ 2ap,~ nxzy -- 2ae 2 2 it' 

where ae,2 is the phenotypic standard deviation in generation 2. 
They presented a recursion to calculate b~r,t and ultimately b~y, ~o. 
However, Woolliams et al. (1993) derived a direct expression for 
b:,r,t, and showed that, 

1 Y 1 Y i 
b:,r,~ 

2~e.2-X iS~ -- ae, 2 X(1 + kh2) ' (10) 

where S~ represents the sum of an infinite series and S~ = 
(1 - c)- 1 with c = 0.5(1 - kh 2) defined as the 'coefficient of com- 
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petitiveness'. For selection indices IH or I o (or Ie) the expressions 
for b~r,2 and b~y,~ are derived in Appendix 2 resulting in, 

1 1 Y 
bxy'2 ~ 20-1~ 2 nx'CxZy 20.1, 2 X "cx iy 

1 Y. ~ ( 1 - - ~ / , ) = 2 ~ r , 2  ~ t ~ t i l  Y . ( z + t x )  . . . .  b . :  ~ 2-47, ,~ ,s~ -,vJ 

(11) 

where S~o is defined as for mass selection as (1 - e )  -1 but the 
coefficient of competitiveness is more generally defined as 
c �89 withz 1 = = ~(% + z:) and G is defined in equation (2) 
and where ~ = (k , , -  k f ) (zm-  zf)/8. For selection on index Ip 
(mass selection) where % = z:  = h 2 and or/, 2 = h20-p,2, equation 
(11) reduces to equation (10) except that h22 is replaced by �9 = h 2 
here, where h 2 arose from a more-accurate approximation to 
equation (A2.2) than the one used here for reasons of complexity 
with index selection. 

If the increase in selective advantage is defined as B~r 
where 

Bxy = b~, ~/b~y,2, (12) 

then by examination of equations (10) and (11) it can be seen that 
B~y is independent of the sex of the ancestor (x) when ~m = z: as is 
the case for mass selection or selection using index ID, whilst for 
selection using Its, B,y is dependent on x. 

Evaluation of equation (8) with t = 2 rather than t = co. Let us 
now examine equation (8) but using, in the first instance, t = 2 
rather than t = of. Firstly, by noting that G = T/X = Fn:/X, it is 
found that 

l f / Y X :  ~ l 

1 F L Y \  2 1 2 2 2 2 ] 
~ L t ~ )  + ~  n'%'zr40"A''' ] 

I [ - ( Y ]  2 F 2 

= ~ L t ~  ) + ( - ~ ) @ p ~ , z Z ~ ]  (13) 

where P~,2 is the correlation between full-sibs due to the breeding 
value of the parent of sex x, as defined in equation (5). 

An extended form of equation (22) of Wray and Thompson 
(1990) approximates cr~r). 2 as, 

2 1 f F b~,2 1F b~rz l 

+fSxy,2  + hsxy,2 } (14) 
% 

where the first term is the binomial sampling variance of the 
number selected from the n~ offspring of sex y born to parents of 
sex x, each of which is selected with probability Pr + 
(b~r,2/n~)Aj(~) which depends on the genetic merit of the parent. 
For the population structure considered here, this sampling 
should be hypergeometric because family sizes before selection 
are constant and the sampling is without replacement. 
Woolliams et al. (1993) approximated this by multiplying the 
term by (X - 1)IX. For random selection (b~_ 2 = 0), this results 

1)X = Y X  ( T - - Y ) T  ( X - 1 ) X  ,this in nxpy(1 -- pr)(X-- -1 -1 e l  -1 �9 
is an approximation to the exact hypergeometric variance 
Y X - I ( T -  Y ) ( T -  1 ) - I ( X -  1)X-1, which shall be used here. 
(The correction to the terms involving Aj(~) will be ignored until 
the section 'More accurate prediction of coselection of sibs'.) The 
term fGr,2 [equation (14)] is the probability of coselection of 
full-sibs not attributed to the parents of sex x [which has already 

been accounted for via the b~r,2 V(Aj(x) ) in equation (13)], thus 

F 
fsx,,2 = ~n: (nx  - 1)(pc,2 - Ox,z)Z 2 

where PD,2 is the correlation between indices of full-sibs [equa- 
tion (3)] and P~,2 is the correlation between indices of full-sibs 
attributed to the breeding value of the parents of sex x [equation 
(5)]. For a general correlation between sib indices p, pzy as an 
approximation to the additional probability of coselection of 
two sibs of sex y (Robertson 1961). The coefficient (F/X)nf 
(n: - 1) reflects that each of the nf offspring of sex y has (n: - 1) 
opportunities for coselection with a sib and that a parent of sex x 
contributes of FIX full-sib families. The term h Gr,2 [in equation 
(14)] is the additional probability of coselection of half-sibs not 
attributed to the parent of sex x ;  hsfy,2 = 0 since in the hierarchi- 
cal population structure there are no maternal half-sibs; and 
analogoulsy to the full-sib co-selection, if P~,t is the correlation 
between indices of half-sibs [equation (4)], then, 

F / F  \ 2 
: : X - 

since there are (PlM)n s offspring of a sire which have probabili- 
ties of coselection with their ( (F /M)-  1)n: half-sibs. This term 
was not introduced by Wray and Thompson (1990) or 
Woolliams et al. (1993) because under mass selection the 
covariance between indices of half-sibs is completely accounted 
for by the sire, i.e., PH,2 = Pro,2" Whilst this is true also under 
selection on an index of (individual and) full-sib records, it is not 
true for selection using an index of (individual full- and) half-sib 
records. 

Following from the above we can write, 

1 2 z (15) 2 2 -1- O-e(xy) "1- O-g(xy) ]Ar(xy)'2 + O'r(xy)'2 ~4 Ltx)  

where, 

Y T - Y X - 1  F 
cr~(xr)HI T--  1 X + ~ n : ( n : -  1)(PD.2- p~.z)ZJ 

v f v  "~ 2 

and (16) 

O'2o~,) = n s ( n s - 1 ) + ~ t ~ - l ) n s J p ~ . : ,  

The first term of equation (15) is the mean squared under random 
2 is hypergeometric sampling vari- selection. The variance oG(,y ) 

ance appropriate under random selection plus covariances due 
to coselection of sibs which are attributed to correlations arising 
from the mate of the parent of sex x or to shared estimation 
errors of family means. The variance a~0)xy represents covariances 
of selection between sibs which are attributable to the parent of 
sex x. The form of ao(~y ) z  in terms of b~y,2 will be used later. 

The covariances of long-term contributions between male 
and female descendants [in equation (8) with t = 2 instead of of] 
can be written similarly except that there is no hypergeometric 
sampling term. By noting that each offspring has n: full-sibs of 
the opposite sex, it is found that, 

IFMF ] 
~r(xm),2~r(xf),2 "Jr- O-r( . . . .  f),2 ~ ~ L ~ -  ~ "1- O-e( . . . .  f) 27 O'O(xm,xf) 

(17) 
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where 

F 2 
Ge( . . . .  f) = ~ nf(po,2 -- p~,2)z,,z: 

and (18) 

f f \ 2 n 2  ~ z = 
(7.( . . . .  f , = t ~  ) fPx.2~m f bxf,2bxm,2V(aj(x,). 

Substituting equation (15) and (17) into (8) [ignoring for the 
moment that in (8) t = o9] results in 

64M 4 + [a~(~m) + %(,,m)] + 2 ~-  [ae( . . . .  f) § frO( . . . .  f ) ]  

2 2 2 
§ " ~  [(Te(mf) § (To(mf)] § ~ f f  4 + [a~(::) § ag( f f )]  

F z .l.2[-;4-][~az.,,::).§247 ] [a2{y,,,)§162 }. (19, 

Evaluation of  equation (8 )  with t = oo. Finally let us consider the 
case when t = oo. There are three important aspects to take into 
account: 

(1) Under random selection (i.e., b,y,t = 0) the mean of the long- 
term contributions of the ancestors is the same for t = 2 as for 
t = oo [see equation (9)] and so the first terms of equations (15) 
and (17) remain unchanged from t = 2 to t = oo. The method of 
Woolliams et al. (1993) shows that this holds also under selec- 
tion. [This is term A3.1 of Woolliams et al. (1993)] 
(2) Under random selection, the collective contributions of the 
variances of the long-term relationships to rate of inbreeding is 
increased by a factor of 2 from t = 2 to t = oo. This does not imply 

2 doubles, but rather via dispersion of genes the that each a~(~y) 
total contribution of 2~,~ for t = oe is twice that of t = 2, where 

2 . < , , = ~ k t ~  ) ~ .... :),,+tff ) (7,(~f),'] 
(20) 

which are the variance and eovariance terms in equation (8). This 
doubling has been observed in simulation when selection is at 
random. It is also as intrinsic to the predictions of Wray and 
Thompson (1990) and Woolliams et al. (1993) (in the method of 
the latter it arises from the summation of terms that occur each 
generation from t = 2 onwards, but weighted by 2 t-  2). In selected 
populations, simulation results show that 2~,~ > 22~,2 where )~,2 
takes the form, 

2.,2 6 4 X ( \ M J  [a~ + a a ~ ) ]  

+ 2 ~  [%( .... f) § fie( . . . .  f ) ]  § ~ [O'e(xf) "l" (Te(xf)] . 

(21) 

Woolliams et al. (1993) show that prediction of 2~,~o can be 
achieved by 2)~x, 2 plus extra terms considered in point 3 below. 
Under random selection (bxy,z = 0) equation s (21) and (20) are 
identical but, under selection, equation (21) also contains the 
b2xy,2 terms from equation (15). From Appendix 3 of Woolliams 
et al. (1993) terms A3.2, A3.6, A3.13, A3.16 and A3.17 sum to 
2(2m,2 + 2r for mass selection. 
(3) The doubling of (21) is insufficient to account for the cumula- 
tive selective advantage and extra terms must be included. The 

selective advantage from parent to offspring is includ- 
2 ed in the ao(xy ) and ag(~,x:) terms which are functions of b~y,2 

[equations (16) and (18)1, Investigation of the method of 
Woolliams et al. (1993) suggests that (by making some assump- 
tions discussed below) the increase in selective advantage from 
ancestor to descendant can be accounted for by replacing b,y,2 in 
%2(~r) and %(~m:f) by b~r, ~. Equivalently, this can be achieved by 

2 2 multiplying (7g(xy) by B, r and ao(~,,r by B ~  Bx: where B~r was 
defined in equation (12). 

Accounting for these points results in the prediction of rate of 
inbreeding, 

1 f2  2 2 2 [ M ~  
A F ~  3~M v. §247 B ~ m a ~  

" [ ae( . . . .  f )  + Bmm B m f  ao( . . . .  / ) ]  

M e 

1 f 2 ~ 2 / F \  
+ 32F ,.2 +a~(::) + B::%(::) + 2 t - M  ) 

�9 [ fie(fro, f f )  -}- B fro B::  %(:,..::)] 

F 2 2 2 
§ [(7e(fm) + By,, ao(r )] . 

Woolliams et al. (1993) also showed that the rate of inbreeding 
predicted from long-term contributions should be corrected for 
contributions from the base population�9 This correction also 
applies to equation (22) resulting in a final prediction AF where 

AF = AF(1 + 2AF). (23) 

Relationship to equation (4)  of  Woolliams et al. (1993) 

Equivalent terms to those in Appendix 3 of Woolliams et al. 
(1993) have been derived for index selection (Wray and 
Woolliams, unpublished notes), but their form is complex. The 
complexity can be traced to the inequality between Coy(breed- 
ing value of sire, index or offspring) and Coy(breeding value of 
dam, index or offspring) i.e., % ~ zr for I n. Under mass selection 
(and Io) this asymetry between sexes does not exist. When terms 
involving %, and Zy are multiplied and accumulated over gener- 
ations many more types of terms result than in the analogous 
derivation for mass selection. This is illustrated by derivation of 
b~y, co for index selection in Appendix 2. Approximations invoked 
for index selection in point 3 above, involve using % =2 z:  for some 
product terms. If the equations for ao2(xy), %(.,~ ~f), O'e(xy), ~Te(xm x f) 
and Bxy [equations (16), but approximating Y X - I ( T - - ' Y )  . 
( T - - 1 ) - I ( X  - 1)X -1 to Y X - I ( T  - Y )T  -1, (18) and (12) are 
substituted into equation (22) then the following equality results 

+ 2 

i 
+ ~ [ 1  + i2((pD,2 - p f,2) + pf,2 Q~)] (24) 

1 
32T [4 + (i 2 + i~)((pD.2 - Of,E) + (P,,2 -- Pro,E) 

+ 2i2(p,.,2Q 2 + pf,2Q}))],  

where Qx = Bxflr/i. Under mass selection (where PD,2 = Pro,2 + 
PZ.2, Pn.2 = P,,,2, Qx = So),  equation (24) reduces to equation (4) 
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of Woolliams etal. (1993) with their K = i 2 ( $ 2 - 1 ) +  
2i[�89 ~ + if c f) + i 2 Sm] (1 --  C2) - 1 approximated to 2i 2 (S~ - 
1) and where their equation (4) has ignored terms in T except for 
4/32T. 

Relationship to the equation of Latter (1959) and Hill (1979) 

The form of equation (22) has been chosen for its similarity (and 
equality when Bxy is set to unity) to the discrete generation 
equation for the prediction of rate of inbreeding of Latter (1959) 
and Hill (1979) which is based on variance of family size in one 
generation for random selection. The variance of family size of 
selected offspring of sex y from parents of sex x, cr2y, is equal to 
~relxr)2 + trolxy)2 here (and similarly for covariances). They derived 
their equation from a genetic drift argument, where effective 
population size is defined by the variance in change of gene 
frequency. Their expression was derived to account for non- 
genetic differences in fecundity and viability of offspring, ~r~(xy) = 0, 
rather than for selection on a heritable trait, although it has 
been used as such (e.g., de Vries et al. 1990; Wray et al. 1990). The 
two-generation Latter-Hill equation proposed by Wray et al. 
(1990) is expected to be approximately equal to equation (22) but 
with Bxy = bxr,a/bxy,2. The Latter-Hill equation ignores some 
higher-order terms which may be approximately incorporated 
through the correction of equation (23). Like the equation (4) of 
Woolliams et al. (1993), equation (22) could be rewritten in the 
form of the (one-generation) Latter-Hill prediction of inbreeding 
plus a term describing the proliferation of lines from superior 
ancestors at the expense of their inferior contemporaries. 

Relationship with the equation of Robertson (1961) 

Equation (22) can also be related to the prediction of Robertson 
(1961) for populations of fu11-sib families (M = F). Understand- 
ing of his method has been hindered by an anomaly in the 
derivation whereby the interpretation of the N used changes 
from N = number of full-sib families (therefore the number of 
parents is 2N) to N is the number of parents (Felsenstein 1989). 
However, the (one-generation) result can be derived using the 
method presented in Latter (1959). Robertson's prediction for 
one-generation can be obtained by setting M = F = N in the 
Latter-Hill equation in which Poisson distribution of family size 
and sampling with replacement are assumed. (Also there is 
assumed to be no environmental correlation between full-sibs so 
that p = PD = P,, + Pz). Robertson argued for a two-fold increase 
in selective advantage from generation 2 to infinity (B = 2), but 
which Wray and Thompson (1990) argued should be B = Bxy in 
the notation of this paper. Robertson's prediction is, 

1 1 A F = ~ ( + B 2 i 2 p ) ,  

which based on a more thorough theoretical derivation equation 
(22) with M = F reduces to, 

AF=~- -~[ I+~( I+B2) i2P] .  

More accurate prediction of coselection sibs 

The use of zxzyp [e.g., in fsxy,2 and hsxy,2 in equation (14)] is a 

first-order approximation to the probability of coselection of a 
pair of sibs of sexes x and y over and above that due to chance 
alone. This can be more-accurately predicted using the approxi- 
mation of Mendell and Elston (1974), 

ixp - vy ]P~ -- PxPy}. 

This expression is well-defined for x = y. However, when x # y, 
whilst the probability is symmetric in x and y, the expression is 
not and both forms are approximations to it. Mendell and Elston 
(1974) show that accuracy decreases with i so the preferred form 
has x = m and y = f .  Under index selection when correlations 
between sib indices can become very high, the use of this more- 
accurate prediction of coselection of sibs is important. 

When x = y, both first-order and second-order approxi- 
mations to the probability should be multiplied by 
( (Y-1) /Y)(T/(T--1))  in an attempt to account for selection 
without replacement. 

Populations in which family size is large relative to the 
number selected 

In the predictions of variance of long-term contributions (or 
variance of one-generation family size) discussed above, 
variances have been increased over and above random selection 
by considering coselection of sibs. This has been calculated as a 
probability of selection of a pair of sibs multiplied by the possible 
number of pairs available for selection, without imposition of a 
constraint of total number selected. In general, this approxi- 
mation is good ( see Results section, Table 2), but when family 
size available for selection is greater than the number selected, for 
example (F /M)n I>M,  then highly-inflated probabilities of 
coselection and variances can arise, particularly when the corre- 
lation between selection criterion ofsibs is high. At the extreme, if 
Pn = 1, then all M males will be selected from a .single half-sib 
family. Wray et al. (1990) discussed this problem and for these 
situations proposed the use of p~ instead of Pm, where 
p~ = ( 1 -  Pn)Pm 4-p,(F/M)nl/T. The full impact of this ap- 
proximation affects several of the equations presented in this 
paper and their adapted form is given in Appendix 3. 

Simulation 

Predictions from equation (23) are compared to rates of inbreed- 
ing observed from simulation. Simulations for mass selection are 
those presented in Wray and Thompson (1990) based on 100 
replicates. For index selection, simulations are similar except 
that selection is based on either I n or I o. Populations have 
M = 20 males, F = 20, 40, 200 females with n I = 3, 6 offspring of 
each sex per dam. Heritabilities considered are h2= 10-6,0.1, 
0.2, 0.4, 0.6, 0.99, @,0 = 1 and common environment variance 
cr~/~2p. = 0. Heritability values close to zero and close to unity 
have been investigated so that the predictions can be tested at the 
extremes where it is possible to postulate the way in which 
selection is operating. When heritability is exactly zero, index 
weights are null and selection is at random. But when heritability 
is close to zero (h 2 = 10 - 6 )  selection on I H (or Iv) is close to 
selection on the family mean since the correlation between sib 
indices is high. When h a = 0.99, selection using any of the three 
indices will result in selection of the same individuals. Other 
populations simulated have M = F = 20, with nf = 3, 6, 12, 20 
under mass selection for traits with h 2 = 10- 6, @ o = 1 but with 
a2 = 0.00, 0.20, 0.60, 1 10 - 6. Within the simulations many statis - 
tics are calculated which are checked with predictions. These 
include variances of breeding values of selected ancestors (about 
the mean of the selected group), correlations between selection 
criteria Of sibs (born in generation 2, calculated by analysis of 
variance), probabilities of coselection of sibs, variance of family 
size from parents (born in generation 1) to offspring, b~y,t, total 
sums of squares of long-term contributions and rates of inbreed- 
ing. Rates of inbreeding presented are the average of those 
observed from generations 5 to 14. Simulation results are the 
average of 1000 replicates for F = 20, 40 and 500 replicates for 
F = 200. An example calculation is given in Appendix 4. 
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Results 

Variances and correlations 

Predicted values and prediction errors of variances of 
true breeding values of selected individuals born in 
generation 1 about the mean of the selected group 
[V(Aj(x))] are presented in Table 1. Predictions agree 
well with simulated values (maximum error 10%). In 
comparison, calculation of the variance of breeding 
values about the unconditional mean [V(A}~))] can 
lead to overestimation by as much as 20% (data not 
shown). Correlations between full and half-sib index 
values (PD,2 and Pro2) are also presented in Table 1; 
predicted values are those described in the notation 
section using a 2 and calculated by Appendix 2. Ax,1 
Predictions of correlations are also accurate (maxi- 
mum standard error of simulations is 0.007) although 
correlations of 0.8 or greater tend to be underpredicted. 
Correlations shown are between sibs born in gener- 
ation 2; these correlations may be substantially lower 
(particularly for high h 2) than correlations between sibs 
born in generation 1 (before selection). 

Predicted values and prediction errors of variances 
of family size (of offspring born in generation 2 from 
male parents) are presented in Table 2. Predictions of 
(co)variances of family size from female parents show 
smaller prediction errors (data not shown). Probabili- 
ties of coselection were also examined but these show a 
similar pattern to the variances of family size. There is a 
tendency to overpredict (co)variances of family size 
from male parents when selection uses I n and in situ- 
ations where n: and Pn are high (i.e., h 2 low). The 
overprediction becomes particularly acute in situ- 
ations where (F/M)n: > M and PH is high. Predictions 
using p~, and the equations of Appendix 3 are also 
presented, which do remarkably well given that the 
adjustments are based on heuristic arguments. 

Expected long-term contributions 

Predicted values and prediction errors of bmm,2 and Bxr 
[equations (11) and (12)] are presented in Table 3. 
When selection uses I D (or Ie, data not shown) the 
simulation results are in good agreement with the 
theoretical result that Bxr is independent of x, the sex of 
the ancestor (since z~ = z:). This is not true for selection 
using In, where for hierarchical populations, breeding 
values of male ancestors are more highly correlated to 
their offspring's index values than are female ancestors 
(z~ > zr If this difference is ignored and an average z is 
used when selection is on I n then serious errors in the 
prediction of rate of inbreeding and its components 
arise (data not shown). Simulation results show that 
the increase in long-term contributions from gener- 
ation 2 to ~ is greater for female ancestors (B:y > Bray ), 

this is expected from evaluation of equation (12) which 
can be shown to be a function of v/z x. For two popula- 
tions with the same structure and heritability, but 
where selection has used different indices, it is found 
that in the population where bxy,z is higher, then Bxy is 
lower. The predictions of bxy,z are generally good 
(shown only for bm,,,2), although they tend to under- 
predict when h2=0.99. For populations where 
(F/M) n: > M, predictions of bmm ,2 are too high. Predic- 
tion of b,,~, 2 using the results which depend on p~, give 
satisfactory predictions. Predictions errors in B~r are 
found to be robust compared to prediction errors in 
bxr,2 and b~y,o o. 

Rates of inbreeding 

Predicted values and prediction errors for rates of 
inbreeding are presented in Table 4. In some simula- 
tions, particularly for high h 2, rates of inbreeding were 
observed to be somewhat higher in generation 2 (and 
sometimes 3). For example, when h2= 0.99, the first 
round of selection (where selected individuals tend to 
come from a few good families) results in a high initial 
rate of inbreeding. In subsequent generations, the rate 
of inbreeding is less as a result of selection of the best 
individuals across families that are genetically less 
variable. However, in all cases investigated, inbreeding 
reached an approximately steady rate by generation 4 
and over the generations included in the average. For 
selection on I n, the prediction error of the rate of 
inbreeding, as calculated from the total sum of squares 
of long-term contributions, accumulated within the 
simulation, [equation (6) with the correction for base 
contributions, equation (23)] is also presented. This 
demonstrates that under index selection where rates of 
inbreeding can be much higher than under mass selec- 
tion, the prediction of the rate of inbreeding via long- 
term contributions remains appropriate. 

Predictions of rate of inbreeding for mass selection 
are accurate when F _> 100 (maximum error of predic- 
tion 7%), but have a tendency to underpredict for 
F _< 40 (maximum error 6%). This is the same pattern 
as found by the approximation equation (4) of 
Woolliams et al. (1993). (Mass selection predictions 
presented here use the Mendell and Elston (1974) 
probabilities of coselection, whereas Woolliams et al. 
used only the first order approximation for their 
tabulated results.) Predictions are also accurate for 
selection on I D but with a tendency to overpredict at 
low h 2 (high PF) (which partially reflects overprediction 
of one-generation variance of family size, data not 
shown), with maximum errors of 6% for nf = 3 and 13% 
for n: = 6. The predictions for I n are accurate provid- 
ing that h 2 is greater than 0.2 and M > (F/M)n:, but 
may overestimate otherwise. The overprediction can 
be as much as 114~o (M=20 ,  F = 2 0 0 ,  n:=6, 
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Table4. Rateofinbreeding x 100. Predicted (P), predicted-simulated (P-S) and percentage errors [100*(P-S)/S] values for populations 
with M = 20 males and F females and n I offspring of each sex/female and with selection using I e, I D or I n. For selection using I n, (S*-S) 
represents the difference between rate of inbreeding calculated from equation (23) using AF from equation (6) (where ~ r  2 is calculated in 
the simulation) and rate of inbreeding from inbreeding coefficients (calculated in the simulation) 

F ny h 2 Iv I o I n 

P P-S ~oError P P-S ~oError P S*-S P-S ~oError ()a 

20 

40 

200 

3 0.00 b 1.05 -- 0.02 -- 1.9 2.57 + 0.14 + 5.8 2.57 -- 0.03 + 0.14 + 5.8 
0.10 1.18 -- 0.05 - 4.0 2.68 + 0.07 + 2.7 2.68 + 0.01 + 0.07 + 2.7 
0.20 1.26 - 0.07 --5.2 2.58 + 0.03 + 1.2 2.58 -- 0.01 + 0.03 + 1.2 
0.40 1.36 -- 0.06 -- 4.2 2.29 0.00 0.0 2.29 + 0.03 0.00 0.0 
0.60 1.41 -- 0.09 - 6.0 1.99 -- 0.02 - 1.0 1.99 - 0.01 - 0.02 - 1.0 
0.99 1.37 0.00 0.0 1.38 + 0.01 + 0.7 1.38 + 0.04 + 0.01 + 0.7 

3 0.00 b 0.84 + 0.01 + 1.2 1.92 + 0.07 + 3.8 2.42 - 0.04 +0.14 + 6.1 
0.10 0.97 --0.01 --1.0 2.14 +0.03 +1.4 2.52 0.00 +0.11 +4.6 
0.40 1.14 - 0.04 - 3.3 1.89 -- 0.03 - 1.6 2.01 0.00 + 0.02 + 1.0 
0.99 1.09 +0.01 +0.9 1.10 +0.02 + 1.9 1.10 +0.07 +0.02 + 1.9 

6 0.00 b 0.89 +0.01 + 1.1 4.02 +0.46 + 12.9 5.28 -0 .08  +0.82 + 18.4 
0.10 1.11 -0 .06  --5.1 4.37 +0.36 +9.0 5.11 --0.08 +0.62 +13.8 
0.40 1.42 -- 0.08 -- 5.3 3.20 + 0.07 + 2.2 3.36 + 0.04 + 0.18 + 5.7 
0.99 1.26 + 0.07 + 7.4 1.27 + 0.05 + 4.1 1.27 + 0.08 + 0.04 + 3.3 

3 0.00 b 0.67 + 0.01 + 1.5 1.16 +0.03 + 2.7 4.27 -- 0.03 + 1.34 + 45.7 
0.10 0.81 -0 .01  --1.2 1.56 +0.03 +2.0 3.31 -0 .01 +0.74 +28.8 
0.20 0.90 + 0.04 + 4.7 1.60 - 0.01 = 0.6 2.58 + 0.03 + 0.34 + 15.2 
0.40 0.99 - 0.01 - 1.0 1.48 - 0.03 - 2.0 1.84 + 0.02 + 0.08 + 4.5 
0.60 0.99 0.00 0.0 1.29 - 0.01 - 0,8 1.41 + 0.01 + 0.01 + 0.7 
0.99 0.83 + 0.02 + 2.5 0.84 + 0.02 + 2.4 0.84 + 0.30 0.00 0.0 

6 0.00 b 0.68 0.00 0.0 2.11 +0.18 +9,3 9.65 -0 .07  +5.13 +113.5 
0.10 0.89 0.02 + 2.2 2.81 + 0.18 + 6,8 5.58 + 0.08 + 1.90 + 51.6 
0.20 1.03 0.00 0.0 2.71 + 0.10 + 3.8 4.04 - 0.06 + 0.84 + 26.3 
0.40 1.15 - 0.02 - 1.7 2.26 + 0.07 + 3.2 2.66 + 0.01 + 0.30 + 12.7 
0.60 1.14 - 0.05 - 4.2 1.77 + 0.02 + 1.2 1.89 - 0.05 + 0.09 + 5.0 
0.99 0.89 + 0.02 + 2.3 0.90 + 0.02 + 2.3 0.90 + 0.06 + 0.02 + 2.3 

(+ 20.5) 
(+ 16.3) 
(+ 8.o) 
(+ 1.1) 
( -  0.7) 

(0.0) 
( + 22.6) 
(+ 16.8) 

(+ 6.9) 
(+ 3.4) 

(o.o) 
(+2.3) 

" Percentage errors in parentheses are achieved when using 
relative to number selected' 
b h e = 10-6 

p" instead of p,,, see section 'Populations in which family size is large 

h e = 1 0 - 6 ) .  T h e  use of  p "  leads  to  i m p r o v e d  pred ic-  

t ions  wi th  m a x i m u m  errors  of  21~o for n I = 3 and  2 3 ~  

for n I = 6. 

Errors in the prediction o f  the rate o f  inbreeding 

E r r o r s  in the  p r e d i c t i o n  of  the  ra te  of  i n b r e e d i n g  for  
index  se lec t ion  are  g rea tes t  w h e n  h 2 is close to  zero.  I n  
this case e q u a t i o n  (22) reduces  to the  L a t t e r - H i l l  e q u a -  
t ion.  As such  it  is i n d e p e n d e n t  of  any  e r ro rs  in pred ic -  
t ion  of  se lect ive  a d v a n t a g e  a n d  d e p e n d s  on ly  on  the  
v a r i a n c e  of  o n e - g e n e r a t i o n  fami ly  size. P r e d i c t i o n  of  
the  v a r i a n c e  of  fami ly  size is fair ly g o o d  w h e n  the  
e q u a t i o n s  of  A p p e n d i x  3 are  used  for  p o p u l a t i o n s  of  
la rge  fami ly  size re la t ive  to  the  n u m b e r  selected.  In-  
deed,  if  v a r i a n c e s  of  fami ly  size f r o m  the  s i m u l a t i o n  are  
subs t i tu t ed  in to  the  L a t t e r - H i l l  e q u a t i o n  then  over -  
p r e d i c t i o n  of  o b s e r v e d  ra te  of  i n b r e e d i n g  is found;  for  
e x a m p l e  for  I~,  F = 200, n f  = 6 the  p r e d i c t e d  ra te  of  
i n b r e e d i n g  us ing  v a r i a n c e s  f r o m  the  s i m u l a t i o n  is 
0.0558, wh ich  is c lose to the  p r e d i c t i o n  us ing  p r e d i c t e d  
va r i ances  of  0.0560 a n d  wh ich  b o t h  o v e r p r e d i c t  the  

o b s e r v e d  ra te  of  i n b r e e d i n g  of  0.0452. (Even  w i t h o u t  
the  c o r r e c t i o n  used  here,  e q u a t i o n  (23), the  L a t t e r - H i l l  
e q u a t i o n  still ove rp red i c t s  at  0.0508.) W h e n  M = F,  

i ndex  se lec t ion  for  a t ra i t  w i th  n e a r  ze ro  her i tab i l i ty ,  is 
e q u i v a l e n t  to mass  se lec t ion  for  a t ra i t  w i t h  n e a r  ze ro  

2 2 F u r t h e r  i n v e s t i g a t i o n  her i t ab i l i ty  a n d  n o n - z e r o  ~c/ap. 
of  the p r o b l e m  was  c o n d u c t e d  wi th  s imu la t i ons  of  

2 p o p u l a t i o n s  of  this  type;  O-(r)xy,t a n d  a(r)xm,xf,t f r o m  these  
are  p r e s e n t e d  in T a b l e  5. A c c o r d i n g  to the  t h e o r y  used  

in this p a p e r  2x, oo/2x, 2 = 2  whe re  2x, t is def ined  in 
e q u a t i o n  (20). H o w e v e r ,  it is f o u n d  tha t  w h e n  ffC/Gp2 2 is 

high,  the  ra t io  is c o n s i d e r a b l y  less t h a n  2. I n  this case  
selected pa r en t s  a re  all c h o s e n  f r o m  a m i n i m u m  of  
families.  T h e  p r o b l e m  is f o u n d  to  be m o r e  a p p a r e n t  
w h e n  fami ly  size is la rge  re la t ive  to  the  n u m b e r  se- 
lected.  Indeed ,  in the  m o s t  ex t r eme  case cons ide red ,  
w h e n  h 2 10 - 6 ,  2 2 _  6 = ac/a  p - 1  1 0 -  and  M = F = n  s =  
20, all of fspr ing are  c h o s e n  f r o m  a single fami ly  and  the  
v a r i a n c e  of  c o n t r i b u t i o n s  f r o m  ances to r s  to  descend-  
an ts  c a n n o t  inc rease  o v e r  a n d  a b o v e  tha t  f r o m  pa ren t s  
to offspring.  T h e  r a t io  in T a b l e  5 is s h o w n  to  be  unity.  
I n  this example ,  the  o b s e r v e d  ra te  of  i n b r e e d i n g  is 0.191 
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(after an initial rate of 0.250), identical to the classical 
result for full-sib mating (Wright 1931). The rate of 
inbreeding calculated from the observed long-term 
contributions [equation (6) with correction (23)] is 
0.161. Whilst the rate of inbreeding calculated from 
observed or predicted (assuming family selection) vari- 
ances of family size using the equation of Hill (1979) 
[which is equivalent to the prediction using equation 
(22)] is 0.243 [or 0.361 after correction by equation 
(23)3. 

Discussion 

The prediction of rate of inbreeding presented here can 
be divided into three steps: 

(1) Equality of rate of inbreeding calculated by identity 
of descent to equation (6) plus (23). 
(2) Equality of equation (22) to (6) which includes (i) the 
assumption (used directly in this paper, but also impli- 
cit in Wray and Thompson 1990 and Woolliams et al. 
1993) that the contribution of 2~, t [equation (21)] to 
rate of inbreeding increases by a factor of 2 or more 
from t = 2 to t = 0% and (ii) the approximation of terms 
which describe the contributions of the expected long- 
term selective advantage when selection is on a heri- 
table trait. 
(3) Prediction of the components of equation (22), i.e., 
variances of one-generation family size and the long- 
term selective advantage terms. 

Errors in prediction of the rate of inbreeding de- 
fined by identity by descent can occur in any of the 
three steps. The extreme example of M = F = n I = 20, 
h 2 = 10 -6, c 2 = 1-10 .6 with mass selection highlights 
the first of these errors. In this example, selection is for 
the best full-si b family and the rate of inbreeding is that 
appropriate to repeated full-sib mating. It shows that 
the errors in the prediction of rate of inbreeding are not 
confined to the situation of selection on a heritable trait 
but can be concerned with constraints of population 
structure. The rates of inbreeding defined by squared 
contributions and by identity by descent may not be 
identical in all circumstances since approximations are 
invoked in the proof of equivalence given by Wray and 
Thompson (1990). However, for the range of breeding 
programmes investigated in Table 4, which includes 
some population structures which could be considered 
extreme for livestock, the equality between identity by 
descent rate of inbreeding and equations (6) plus (23) is 
good and the prediction of long-term contributions as 
a means of predicting the rate of inbreeding remains an 
appropriate goal. 

In some situations, errors in the prediction of rate 
of inbreeding occur at stage 2, where the ratio X~, ~o/~-x,2 
[equation (21)] is less than 2. In the extreme example 
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above, of selection of a single full-sib family, this ratio is 
1, as the variance of long-term contributions from 
ancestors to descendants achieves its maximum after a 
single generation. Since it is at stage 2 that the equality 
of equation (22) and the Latter-Hill equation is found 
(when selection is for a non-heritable trait), then errors 
arising at stage 2 are equally applicable to the Latter- 
Hill equation. Such errors have already been discussed 
by Wray et al. (1990) in comparison of the Latter-Hill 
prediction of inbreeding with the approach using the 
maximum eigen value from transition matrices 
(Woolliams 1989). Errors in stage 2 are less easy to 
detect explicitly when selection is on a heritable trait, 
but are likely to contribute to the prediction er rors  
observed in Table 4, particularly when the family size 
available for selection is large relative to the number of 
parents and when the correlation between selection 
criteria of sibs is high. 

Errors also occur at stage 3, in the prediction of 
variances of one-generation family size (Table 2) and 
long-term selective advantage (Table 3) (errors in the 
latter reflect errors in the former). The prediction of 
variances of family size assumes selection across fami- 
lies, but in examples when family size prior to selection 
is large and correlation between sib records is high, 
selection tends to be for selection of the best families, in 
which case the variance of family size after selection is 
less than predicted. A method has been presented to 
account for selection of half-sib families, but selection 
of the best full-sib families within half-sib families has 
been ignored. 

For  the populations investigat@ in this paper 
(Table 4), rates of inbreeding are underpredicted when 
selection is on phenotype alone, this is expected as the 
terms presented here are an approximation to the 
derivation of Woolliams et al. (1993). Under mass se- 
lection, the errors in steps 1-3 discussed above, are 
unlikely to occur for population structures relevant to 
livestock breeding. However, these errors can become 
important when selection is on an index which includes 
records of collateral relatives, ensuring that the corre- 
lation between the selection criteria of sibs is high. In 
these cases, there is a tendency for overprediction of 
AF, which is found despite the fact that (small positive) 
terms are ignored in the derivation. The correction to 
the rate of inbreeding for base contributions (equation 
(23)] sometimes causes a good prediction of AF to 
become an overprediction, the good prediction before 
the correction can be attributed to compensatory er- 
rors. 

In summary, whilst the goal of prediction of rate of 
inbreeding via long-term contributions remains valid, 
the method presented here to achieve this prediction 
does not fully acount for constraints upon the variance 
of long-term contributions arising from the population 
structure. Under most circumstances the absence of 

such a constraint is not an issue, but it becomes import- 
ant when correlations between sib indices are high 
(>  0.8) and family size is large relative to the number 
selected. 

In many practical breeding programmes, a restric- 
tion is placed on the number of offspring selected per 
full-sib and half-sib family. Such a restriction would 

2 2 2 and the influence the prediction of o-r(xy),2, %(xy), O'e(xy),2 
equivalent covariances, and the linear prediction of 
number of offspring selected per parent. However, the 
problems in the assumption of the increase of long- 
term contributions from t = 2 to t = oe are unlikely to 
arise. 

When selection in a hierarchical population is on 
an index which includes half-sib records, a sire is more 
highly correlated to the index values of his offspring 
than are his mates. This results in an asymmetry be- 
tween the contributions from male and female ances- 
tors to the evolution of the rate of inbreeding which 
does not arise under mass selection or when full-sib 
records alone are included in an index. It is important 
to account for this asymmetry in the prediction of 
inbreeding when selection is on I H. One-generation 
selective advantage (bxy,2) is greater for I H vs I D and I D 
vs I e, whereas the increase in selective advantage (Bxy) 
shows the reverse pattern. Thus, one-generation pre- 
dictions of rates of inbreeding are expected to under- 
predict the observed rate of inbreeding to a lesser 
extent when selection uses sib records compared to 
mass selection (examples are given in Wray 1989). 
Under mass selection and with no common environ- 
mental effects, the correlation between the selection 
criteria of sibs is entirely of genetic orgin, whilst under 
selection on family indices, the correlation is partly of 
environmental origin. Thus, the relative contribution 
to the total inbreeding of the long-term increase of the 
genetic component must be smaller for selection using 
family indices (Wray et al. 1990). 

Prediction of rates of inbreeding when selection is 
based on estimated breeding values calculated by 
BLUP (best linear unbiased prediction) could be 
achieved using a selection index, an extension of I u but 
including estimated breeding values of the sire, dam 
and other mates of the sire (Wray and Hill 1989). 
However, overprediction of rates of inbreeding will be 
expected as BLUP induces even higher correlations 
between sib indices than I~. Use of the predictions 
obtained here for I~, although not exact, would be an 
improvement on what has been used in the past. 

This paper represents the completion of the second 
stage towards the joint description of progress and 
inbreeding in terms of the same predictable pa- 
rameters. Woolliams et al. (1993) derived terms which 
describe the expected proliferation of lines and show 
how inbreeding can be related concisely to these terms 
in addition to the variance of family size in mass 
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selection. This paper extends this theory to the import- 
ant case of index selection and could be adapted to other 
situations, such as sex-limited traits, non-hierarchical 
population structures, and variances in physical family 
size prior to selection (the subject of a later paper). 
It is now possible for a wide range of circumstances 
to assess quanta of information for their value in 
promoting progress and their value in promoting 
inbreeding. 

Appendix 1. Expression for AF partitioned for male 
amd female ancestors 

Under  the assumption of constant rate of inbreeding each gener- 
ation, Wray and Thompson (1990) showed that  the rate of 
inbreeding can be expressed as, 

1 1 M + r  
A F ' ~ 4 ( M + F ) 2  lrC~v(Lt)Cm,O1 4 ( / + F ) 2  , ~  r2 

where C m ,  0 is a square matrix of order M • F of relationships 
between ancestors born in generation 1 and their descendants 
born in generation t, which result from the Mendelian samplings 
r e c e i v e d  by the ancestors. The elements of C~r(LoCm,0 are all the 
same when t is large, thus the pre- and post-multiplication by the 
unity vector 1 sums all the elements and division by (M + F)2 
gives the average. If the order of ancestors is males then females 
and the order of descendants is males then females, then Cm,tl 
can be partit ioned as, 

C m ' ~  C ~  C ~ A  

T and Cm,oCm,~) can be written as, 

[ cLc.  + cLc.  + 

+ + J 
Since all elements are equal, the four blocks can be averaged separ- 
ately, 

1 
T T 

4(M + F) 2 1 Cm.0Cm,t)l  

i r l  r r 
+ CLC o)I 

2 r T T 
+ ~ 1  (CmmC.i + C/ .Csf  ) 1 

1 T T 
+ - ~  1 T(CmfCmf ~- Cf fC f f )  1J.  

One reason that all elements of Cm, t )Cm.  o arc identi- 
cal is because the rows within each C~r are identical (Wray and 
Thompson 1990), thus Cxr can be represented by X identical column 
vectors. The i th element of a column vector of C~r is ~ where 2 ri(xy),t 
rlt~y), t is the additive genetic long-term contribution between (the 
Mendelian samplings of) ancestor i of sex x and its descendants of sex 
y and the �89 is the value of the Mendelian sampling of the ancestors. 
Thus, equation (7) follows. 

Appendix 2 

Derivation o f  2 V[Aj(x)] V(Ai(x)) = 4aa~,~. is the variance of se- 
lected indivuals born in generation 1 of sex x (A~)) about  the 
mean of all the selected indivuals of sex x (A~)). 

V[A/<~)] = V[A~,)  .,4* * - j<~)] = v[&<~)] - v [ ~ ) ]  

V [ A ~ ) ]  = (1 - k ~ p  2) (Pearson 1903), p2 2 2 = al,O/aA,O and 

VEA~)] = xEVEA~x)] + (X - 1) Coy [A~,), Aj,(~)] ] * 

(Woolliams et al. 1993) where 

�9 * * * * * 
Cov [As(x) , A S,(~ ) ] = P D(~) C D(~) + P H (~) C H(~) . 

PD(,:) (Pmx)) is the probability of two selected individuals being 
full (halt) sibs calculated as the probability of coselection of a pair 
of sibs (Mendell and Elston 1974) multiplied by the number  of 
sibs, 

P* ~ n  YOU pD, l i~-- V~ 

L k~ --YD, l'~x] _l 

l i e  "~ F pn.l i~-- v~ "] 

CD(~)(Cmx)) is the covariance between breeding values of full (half) 
sibs after selection (see Tallis 1964, p228), 

CD(~) = CrA,O aD + q5 [ V~, Vx, PD, 1 ] [-O(P -- PD, 1 uo ) 

+ Up(Up -- PDA P)]/(PxP*(~)) + p 2 ~.2 + 2pt~ 

/ 
and cb(v~, v~, PD.1) is the frequency of a bivariate normal with correla- 
tion PD,a where both truncation deviates have value v~(so 
q)(v~, vx, Po,1 ) = e -~O -P~,,0/[2~(1 - p~,1)1/2]), a o is the correlation 
between the breeding values of generation 1 full-sibs before selection 
(a o = �89 and uv is the correlation between the breeding value of an 
individual with the index value of its full-sib (before selection). For 
index 1n, 

+~I'2(1--M)+fl3(l+M)]}aA,O/Cr,,o . 

To calculate Cm~ ) replace all subscripts of D for full-sibs by H for half- 
sibs, a n = �88 and 

Derivation o f  bxy,2 and bxwy a. 

Wray and Thompson (1990) showed that  bxy,2 can  be represen- 
ted as  bxr,2 = nxfls2,Ai(~) = nxfls2d2 fllz,a,t~ ) where sr and I t  are the 
selection scores (1 if selected, 0 otherwise) and index scores of 
individuals of sex y born in generation t,/3 represent regression 
coefficients and/3~t D ~ zy/ai  ~. The coefficient fl12 a.( ) = ~zx and 

1 ' ' , i x  

thus b~y,2 ~ ~nxZxZy/aA2. 
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Further,  Wray and T h o m p s o n  (1990) showed that, 

l f  Y b Y M F 

(A2.1) 

where bxwy,t is the regression coefficient which accounts for the 
additional selective advantage of the ancestor to the descendant over 
and above the selective advantage from the ancestor to the parent of 
sex w in generation t - 1. 

Similar to the case for b~y,2, b~r,3 can be represented as 

bxwy,3 "~ nwfis3.13 fll3,Ai(x) 

where the regression coefficients represent regression over and above 
that already accounted for between x and w, i.e., after accounting for 
the selection of w (as well as selection of x). The covariance between 
grandparent of sex x and grandoffspring before accounting for 
selection of " ~ w is Z Zw V~ and 

flI3,Ai(x) 

2-  ~ ,  2 . . K w |  (A2.2) 
f f l  t I - -  4ZmKm - -  ~ T f l ~ f )  d 

where V~ = V(A,~)), the variance of the breeding value of the ances- 
tors. This can be approximated as fl,a,A.~ ~ i % ( 1 - % k ~ ) .  Thus 
b~wr. 3 ~ ~nw%(1 - %k~)zr/a~,3. Using similar derivations and ap- 
proximations it can be shown that for t ~> 4, 

b~wy,t "~ ~n~%~(1 - %k) [~(1 - kz) ] t-~ 

�9 � 8 9  - ~ ) z , / % .  

In this equation �89  %k) is the reduction accounting for the 
selection of descendants born in generation 2 averaged over males 
and females (hence the average k) but dependent on the sex of the 
ancestor. The �89  rk) terms are reductions due to intermediate 
generations of selection, averaged over both sexes of descendants; 
hence the term involves average k and * " the coefficient average z. 7z w 1s 
of relationship between w and y and 7(1 ~ - zkw) ~s" the reduction due 
to selection of sex w averaged over male and females in generation 
t - 2 .  

Thus in summary we can write, 

1 1 
bxw~,,3 ..~ ~n~z.,,~(1 - "c~kw)zSa~,3, 

1 t t -4, 
bxwy,t ~ ~nw'CwCxCwC Zy/(~l,t, 

where ~ c w = 7 ( 1 - z k ~ )  , c '~=�89 c=7(c,,,+cr As in 
Woolliams et al. (1993) it will be assumed that az.2 will be close to its 
equilibrium value. 

Following Wolliams et al. (1993), equation (A2.1) can be repre- 
sented in matrix notation by, 

M F 
_ _  T b r b~,t - D h.,t_, + ~ (b . . . . .  b~,.y,,) + ~ (bx: . . . .  ::,t) , 

where b~t= [b . . . .  b r V 1/2 1/2M/F] , xSd] and D is 11/2F/M 1/2 j . Matrix D 

describes the dispersion of genes through the population from gener- 
ation to generation in the absence of selection and has the property of 
idempotency (I) ~ = D). By analogous derivation to that presented in 
Appendix 1 of Woolliams et al. (1993) it can be shown that, 

~V, ['M/X'~ /imM/X'~'] 
b~,~ = ~ a ~ - L , Z ~ F / x ) + d , ~ i : F / X ) J  

1 1 b . t : ~ 0 - ;  Ii(% +dx+c'~dS, 4 ) ( M / X ~  
' \ r /x  / 

t r f i m M / X ' ~  
+d.c'~c- | / /  fort_>4 

\ i:r/x ]J 

t j 1 
= ~Dm~(1 -- ~xk~) where St=~,s:oC , d=7('c,,c,,+zycf) and d~ 1 1 

+ Zy�89 -z~k:)].  Following from this we can write in summary, 

1 Y 
bxr,2 ~ 2-~x,2 ~'q, i, 

1 Y 
b~y,3 ..~ _ ~ ( i %  + iydx) 

zo l.2 a 

1 Y 
bxr,t ~ ~ ( i z ~  + id~ + idc'~S,_4 + iyc'~dc t-'*) 

Z, t T i , 2  a 

1 Y 
b~y,| ~ x ; ( i z .  + id~ + idc'~S~) 

Lff  l .2 A 

where S~o = (1 - c)- 1 = 2(1 + kz)- 1. Substitution of expressions of d, 
d~, c'~ and Soo into b~r,~ results in equation (11). 

A p p e n d i x  3.  A d a p t a t i o n  to  e q u a t i o n s  w h e n  
( F / M ) n / >  M 

The adapta t ion of equat ions in this situation affects only males 
selected from male parents. Therefore, in generation 2, only 
regression coefficient bmm,2 is affected, resulting in bmm,2 

1 
"Cmi'. However,  in subsequent  generations all bxr: are af- 

2 0 - 1 ,  2 

fected via b . . . .  t terms [see equat ion (A2.1)], and it can be shown 
1 Y 

that  b~y ~ .~ - - - - ( i ( ~ ) z  m + Gx + G c x ~ )  where i~, is the selec- 
' 2~rl, 2 X 

tion intensity appropr ia te  to p ' ,  i(.) = i if x = f and g(tml., -t- if) if 
J, . !  . x = m .  G=�89 + dif)  , Gx=�89 + dfly), e=g(ZmC~t~/Z~ + 

ZsC:) and e~ = ~(%~(11 1 _ km%)lm/tm" " + z:�89 -- k:%)]. 
Changes to the variances required for equat ion (22) are 

/ _ _  k 

. . . .  . . . .  : 

nrn i 
0-(g)mm,taf = ~ S(g)mra,mf 

where the U terms represent the Mendell and Elston (1974) probabil- 
ities of coselection of sibs, the '  implying the use of P'm, i'm, k',,, and v'm, 
and the use of p: + Pv~, Pn~ or Pm are implied in U(~):,,, (or U(~):m,::), 
U(~)~ m (or UO~ . . . .  : )  of Um~ ~ (or U m . . . .  : )  respectively. These terms 
are equivalent to those in the main text if p ' ,  is replaced by p~. 
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Appendix 4. Example 

For an example population M = 20, F = 200, ny = 6, h~ = 0.4 and 
2 2 ac/a v =0  with selection using I x, then terms described in the 

first section of the methods are n,, = 60, T = 1200, p,, = 0.0167, 
Ps=0.1667, Vm=2.129, VS= 0.967, Z,,=0.041, Zf=0.250, 
i,,=2.485, i s =  1.499, i =  1.992, k,, = 0.885, ky=0.797 and 

2 2 2 2 =0.1 and k = 0.841. If av,o = 1, then aA,o = 0.4, Cram.0 = aAy,0 
Z O'Aw=0.2. Index parameters are /71=0.250, /?2=0.700, 

/~3 = 0.957, a~,o = 0.226, z,, = 0.957, Zy = 0.726 and z = 0.841. 
Calculation of V[A;(~)] described in Appendix 2 requires the 
following: p = 0.752, P~,I = 0.436, Pp.1 = 0.779, PH(m) - -  0.126, 
Pros) = 0.367, PD~m) = 0.388, Po(y) = 0.610, Un = 0.328, 
uD=0.586, C*(m)= 0.007, C*(S)=0.013, C*I,,)= 0.058 and 
C*(s ) = 0.060. From these V[A*(m)] = 0.200, V[A~y)] = 0.220, 
V[A*(m)]=0.018, V[FI](s)]=0.003 and V[Aj(, .~]= 0.182, 
V[A;(y)] = 0.217. Then, since a~x,1 = �88 V[A;(~)], a2am,~ = 0.046, 

2 2 aaf,1 = 0.054 and GA, 22 = 0.300, From equation (1) cr,,z = 0.152 
and from equation (11) b.,,,,2 = 3.05, bray,2 = 18.41, b~,,,2 = 0.23, 
byy,2 = 1.40, b,,,,,~ = 2.69, bmI,~ = 26.85, bI,~,~ = 0.23, 
b~y,~ = 2.34, B~y are reported in Table 3. For offspring born in 
generation 2, correlations are: pu.2=0.308, pD,2=0.671, 
Pm,2 = 0.275, PI,2 =0.188 from equations (3)-(5). Variances and 
covariances of contributions from parents of sex x which are not 
attributable to the selective advantage conferred by the parent 

2 ~r~)m s = 28.52, 2 = 4.37, of sex x are: O(e),,,,'----2.45, ff (e)mm,m f 

O'{e)f m = 0.21, 2 2 o(~)s f = 2.20 and a(~)S,n,y s = 0.30 [-equations (16) 
and (18)]. Variances and covariances of contributions from 
parent to offspring which are attributable to the selective advan- 

2 2 2 
tage of the parent are: a(o),,m = 2.84, tT(o)m f = 68.52, a(g) . . . .  y = 

2 2 
13.04, a(o)s~ = 0.01, a(o)s s = 0.38 and a(o)s~,ss = 0.08 [equations 
(16) and (18)]. These variances and covariances when summed, 
e.g., cr~)~y + ag0),r , give the one generation variances of family 
size presented in Table 2. The rate of inbreeding as evaluated by 
equation (22) is AF = 0.0254 and with correction [equation (23)] 
AF = 0.0267. In this example M < n,, and therefore the adapta- 
tions presented in Appendix 3 apply. Thus, p~,=0.0269, 
im= 2.307, i(m ) = 1.903, i(s ) = 1.992, v" = 1.928, km= 0.875. For 
bxy,t  , G i n =  0.077, Gs=0.156, G=0.116, e,,=0.155, es=0.315 
and e=0.235 resulting in bm,,,2=2.83, b,,,,,| 
b,,s.~o = 25.71, bs,,,~o = 0.23, bss.~ = 2.33. Variances and 
covariances of contributions, which differ from those above, are 

2 2 11.90. G(e)m m = 2.21, a~) . . . .  f = 3.40, a~)m~ = 3.47 and r = 

Finally, AF =0.0233 and with correction (23) AF = 0.0244. 
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