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Abstract. For populations undergoing mass selection,
previous studies have shown that the rate of inbreeding
is directly related to the mean and variance of long-
term contributions from ancestors to descendants, and
thus prediction of the rate of inbreeding can be
achieved via the prediction of long-term contributions.
In this paper, it is shown that the same relationship
between the rate of inbreeding and long-term contribu-
tions is found when selection is based on an index of
individual and sib records (index selection) and where
sib records may be influenced by a common environ-
ment. In these situations, rates of inbreeding may be
considerably higher than under mass selection. An
expression for the rate of inbreeding is derived for
populations undergoing index selection based on vari-
ances of (one-generation) family size and incorporating
the concept of long-term selective advantage. When the
mating structure is hierarchical, and when half-sib
records are included in the index, the correlation be-
tween parental breeding values and the index values of
their offspring is higher for male parents than female
parents. This introduces an important asymmetry be-
tween the contributions of male and female ancestors
to the evolution of inbreeding which is not present
when selection is based on individual and/or full-sib
records alone. The prediction equation for index selec-
tion accounts for this asymmetry. The prediction is
compared to rates of inbreeding calculated from simu-
lation. The prediction is good when family size is small
relative to the number selected. The reasons for over-
prediction in other situations are discussed.
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Introduction

The mean and variance of long-term genetic contribu-
tions from ancestors (in a closed population) can be
related to the rate of inbreeding (Wray and Thompson
1990). After several generations, the long-term contri-
butions from an ancestor stabilise and are the same to
all individuals born into the population, with the
values differing between ancestors. The mean simply
reflects the constraint of the number of ancestors and
the parents used in each generation and is the same
whether or not selection is practised. The variance,
however, is increased by selection.

Offspring of parents who are genetically superior
for the trait under selection are more likely to be
selected than the offspring of genetically-average or
inferior parents. The parents are said to confer a selec-
tive advantage to their offspring. When parents are
selected at random, the sampling of parents is indepen-
dent of the sampling process of the previous generation.
However, when parents are selected on a heritable
trait, the selective advantage is inherited, and s con-
veyed, in part, from parent to offspring. Thus the
breeding value of an ancestor has influences on selec-
tion decisions in all subsequent generations. Wray
etal. (1990) introduced the terminology of one-
generation, two-generation and long-term selective
advantage, referring to that conveyed from parent to
offspring, grandparent to grandoffspring, and ancestor
to (distant) descendant. They reviewed different
methods to predict the rate of inbreeding which can be



classified in the same way, according to the number of
generations of selective advantage they attempt to
incorporate. Only the methods of Robertson (1961),
Wray and Thompson (1990) and Woolliams et al.
(1993) are long-term methods.

For populations undergoing mass selection Wray
and Thompson (1990) presented a recursive algorithm
to predict the mean and variance of long-term contri-
butions and hence to predict the rate of inbreeding,
Woolliams et al. (1993) modified components of the
prediction and presented an explicit expression for the
long-term selective advantage and the rate of inbreed-
ing. Further, they showed that the important terms of
the prediction can be related back to the equations of
Latter (1959) and Hill (1979), with the addition of a
term describing the contribution of the expected long-
term selective advantage.

The present paper is concerned primarily with
the prediction of the rate of inbreeding when selection
is based on an index of records of an individual and
its collateral relatives and where sib records may
be influenced by a common environment. In these
situations, the rate of inbreeding may be consider-
ably higher than under mass selection. Justified by
the formal derivation of Woolliams et al. (1993), this
paper presents a more intuitive derivation which
highlights more explicitly the relationship between
the long-term contribution method of Wray and
Thompson (1990} with that of Robertson (1961), on
the one hand, and Latter (1959) and Hill (1979), on
the other.

Methods

Definition of population structure and index parameters

Throughout, conventions on notation follow as closely as pos-
sible those of Woolliams et al., (1993). The population structure
considered is one of hierarchical random mating of F females
with M males (M < F) with discrete generations. Generation 1 is
produced by the mating structure from an unrelated, unselected
base population. The term ‘ancestors’ is used to refer to individ-
vals born and selected in generation 1. Each female produces a
family of n offspring comprising n, males and n, females
(n=2n,). Each male has n,, offspring of each sex (n,,=n;F/M).
X, Y or W and subscripts x, y or wmay be used to specify a single
sex, either male or female e.g, X =M or F,n,=n, or n. T is
used to denote the total number of offspring of each sex born
each generation, T=Xn,. The proportion selected is p after
truncation at the standardised normal deviate v, p = ®(v) with
the corresponding normal ordinate z = ¢(v), where ®(.) and ¢(.)
represent the cumulative and probability density functions of the
normal distribution. The standardised selection intensity is
i=z/p and the variance reduction factor is k = i(i — v). When
these terms have subscripts they are the values for the sex of
animals indicated by the subscript, and without subscripts they
are the average of the sexes.

Assumlng an infinitesimal model of gene effects, the total
genetic variance of individuals born in generation £ is 65 4. Which
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can be decomposed as,
2 2 2 2
A =0 umi—1 1 Oups—1+ 04y

where 675, 1 and o fi—14T€ 7 ! of the genetic variances between
sires and dams born and selected in generation ¢ — 1, 62, is the
W1th1n family genetic variance, and aim 0=04r0= t6%, =
40 a,0- These parameters are used only for t <2, and so reductions
in genetic variance due to inbreeding are ignored. The pheno-
typic variance in generation ¢ is,

2 2 2 2
Ops=04;+0c+0g

where o5 and o} are the common environmental variance of
full-sibs and the error Varlance respectlvely Heritability in gen-
eration ¢ is defined as h? = O’A t/ap "

Selection is assumed to be based on an index (I z) of individ-
ual record (P), the mean of n full-sib records (including individ-
ual) (Pp), and the mean of (F/M)n half-sib (including the
individual and its full-sibs) records (Pp),

IH=.B1(P_FD)+ﬂz(FD_FH)+/33pH=

where ﬂl, Bs, B, are selection index weights. The index is
written in this way because Cov(P Py, P, —Py)=Cov(P—
P, Py)=Cov(P, — Py, Py)=0. P is defined so that the mean
of P each generation is zero. Selection index weights are
assumed to be constant throughout and are derived so that the
index is optimum in the first generation: Cov(4,I) = V(I), where
A is the individual’s breeding value. This assumption is adopted
for simplicity and for comparison of prediction results with
simulation results later; the theory can be developed ana-
logously without this assumption (Woolliams and Wray,
in preparation). The selection index weights each generation
are,

2 2
O4r0+ ;lO-Aw

2
O 4
.31: w ﬁ2=

H
6%, + 0%

1
O'if,o + 0'?; + ;’l‘(aiw + G%;)

and
2 M t,
Gamo+ — F UAfo+ O'Aw

M 1 '
Gf;m,o + f[afmo + 0'(2; + ;(O’iw -+ a§>:|

Before selection the variance of the indices of individuals born in
generation t is,

1
ot~ i+ 11
1 M
+ ﬁ%[oif,t—l +o¢ +;(in + Ufz)]<1 _F>

M 1
+ ﬁ%{aimm + wﬁ—[oif,,_l + 0%+~ (0h + aé)]}. 0y

.33=

Before selection Cov(4 of sex x parent, I, of offspring), =
21,67 “x.:—1 for offspring born in generation ¢, where
t,=pBy and t,=p,(1—M/F)+ B;(M/F). 2

In the absence of selection Cov(Iy of sex x parent, I, of
offspring) = %‘cxaio.
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The correlations between indices of two full-sibs {pp ) and
two half-sibs (py ;) are

1 M
o ={ = iieiurob+ (1)
2 2 1 2 2
'I:UAf,z—1 +oc+ ;(O'Aw + O'E)J

M 1 )
+ ﬁ%[aim,r_ F —F—[oi fa—1 oot ;(aiw + ai)ﬂ}m,f,

&)

and
M 1
Pra= {— if[ai,,,_l + ¢+ =05 + af;)]
n
M 1 _
+ ﬁé[aim,,_l + F[Gif,,- oo+ ;;(aiw + oﬁ—)ﬂ}a[ﬁ

©

The correlation between indices of two full-sibs due to the
breeding values of the dam is p,, and the correlation between
indices of two full-sibs or two half-sibs due to the breeding value
of their sire is p,,,, where

2 2 -2
Pxit=Tx0axt—101;¢ - (5)

Two other selection indices are considered: an index of
individual record and full-sib mean, I, = §,(P — Pp)+ B,P,
where f; is the same as in I and

1

2 2 2
Oamo0+ Gas0+ EO-AW

ﬁ2= s

1
2 2 2 2 2
Tam,o T 04r0+0c+ E(O-Aw +0%)

and an index of individual record only (mass selection), I, = §, P,
where B, =h% In the methodology that follows, derivations
are made for index I . The results are also appropriate for I if in
Iy, B is set equal to B, of I, and for I, 1f in Iy, B and f3, are
set equal to f; of I,. For each index a” must be calculated
appropriately.

Simplification of the method of Wray and Thompson (1990)

Rate of inbreeding from long-term contributions. Under the as-
sumption of constant rate of inbreeding each year, Wray and
Thompson (1990) presented an expression for the rate of inbreed-
ing (AF) appropriate for selected populations,

1 M+F

AF (M+F)2 Z 7 e (6)

where r;, is the total additive genetic contribution of ancestor j
born in generation 1 to its descendants born in generation t.
Alternatively, r;,/(M + F) is the additive genetic relationship
between the Mendelian sampling term that ancestor j received
and each descendant, i.e., the genetic relationship between ances-
tor and descendant which cannot be traced to the base gener-
ation (the parents of the ancestors). Appendix 1 shows that this
expression can be partitioned by sex of ancestor and by sex of
descendant to give,

AF 1{ ! [f f +f f }
RV ¥ jmmy, o Tj(fmy, 0
16 | M2 = J(mm) = J(fm)

2 M F
tVF . Pimmy.co im0 + 2 Vit my,eo T if Puco
j=1 =1

1 al 2 d 2
+ ﬁ|: 21 im0+ -21 Tits o }} @)
j= j=

where 7y, is the long-term contribution of ancestor j of sex
X to its descendants of sex b2 Terms 7y, have mean p, ),
variance o—,(xy), and covariance between male and female
descendants of ¢, 1) - Therefore, an equivalen expression can
be written,

1
E[AF]~ M{[uim,w + 7m0 ]

M
+ 2[ :I [ttrmmy, o0 Ertmpy, o0 + Orimm,mf),00 ]

M 2
+ [Fil I:.U'f(mf),oo + O-E(mf),oo]}

16F{[”'W’ wF O )0 ]

F
+ 2!: ]Lur(fm) wlr(r 1,00 T Ourm )0

+ r 2[ﬂr2(f )w‘i'arz(fm)w] . ®)
M ™h ’

Mean of long term contributions. The mean p,,,, = E[7j,),.1 s
an expectation conditional on the deviation of the breeding value
of ancestor jover that of its selected contemporarles of 4 ey such
that E[A4;,,]1=0 and V[A4;,]1= 4671 (which is the variance
about the mean of all selected ancestors of sex x, evaluated in
Appendix 2). Assuming a linear model, the mean can be ex-
pressed as

5 Y 1 t—1
rey,e = El7jep  J=277E 1 bxy,zAj(x)](§>

1 1Y
—_ §E|:} + bxy’tAﬂx):I (9)

(Wray and Thompson 1990). The term 2~ ?b,,, can be inter-
preted as the regression coefficient of the number of distinct
pedigree pathways to descendants of sex y in generation ¢ on the
breeding values of their ancestors of sex x. The term (3!
represents the relationship between ancestor and descendant
along a single pathway. When selection is at random b, , is zero.
Under selection, b, , is the one-generation selective advantage
and by, , is the long-term selective advantage.

Under mass selection Wray and Thompson (1990) showed
that,

1 Y,
— i,
20p,X 7

1
by XNz, =
¥,2 2 Op.2 x“y
where op , is the phenotypic standard deviation in generation 2.
They presented a recursion to calculate b,,, and ultimately b, -
However, Woolliams et al. (1993) derived a direct expression for
b.y.» and showed that,

1y 1Y i
b H——iS, = 10
o e X 00 ap, X (L + kR2Y (10

where S, represents the sum of an infinite series and S
1-—-c)” £ with ¢ = 0.5(1 — kh3) defined as the ‘coefficient of com-



petitiveness’. For selection indices I ; or I', (or Ip) the expressions
for by, , and b, ,, are derived in Appendix 2 resulting in,

b ! Y‘Ci
R — N T, ==
xy,2 20_1’2 xTxZy 20’1,2X xty
1Y (t+1,) 1 Y( <)
i 1—-y)= —
boyo X5 S A=V=5 % 1+kr( v)
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where S, is defined as for mass selection as (1 —c)™! but the
coefﬁc1ent of competltlveness is more generally defined as
11 ~kr) with 7 = 2(r +1,)and 1, is defined in equation (2)
and where § = (k,, — k/)(z,,— 7 f)/8 For selection on index I,
(mass selection) where 1,,=1,=h* and g/, 2= =h%0p 5, equatmn
(11) reduces to equatlon (10) except that h3 is replaced by t=h?
here, where h% arose from a more-accurate approximation to
equation (A2.2) than the one used here for reasons of complexity
with index selection.
If the increase in selective advantage is defined as B,,
where

Bxy = bxy,oo/bxy,la (12)

then by examination of equations (10) and (11) it can be seen that
B,, isindependent of the sex of the ancestor (x) when 7,, = 7, as is
the case for mass selection or selection using index I, whilst for
selection using I, B,, is dependent on x.

Evaluation of equation (8) with t = 2 rather than t = 0. Let us
now examine equation (8) but using, in the first instance, t =2
rather than t = 0. Firstly, by noting thatn, = T/X = Fn /X, itis
found that

1 Y \?
/“‘rz(xy).l = Z{(X) + bazcy,z V[Ai(x)]}
1YY 1 2 55,2
zz e +4(72 N7, 2,40 451
I,2
1 Y \? F\?
=z[<}> +<}> "iﬂx,zzﬁil (13)

where p, , is the correlation between full-sibs due to the breeding
value of the parent of sex x, as defined in equation (5).

An extended form of equation (22) of Wray and Thompson
(1990) approximates o;z(xy),z as,

1 b b
2 xy,2 xy,2
Crapy2 ZE{ [py + nv Aj(x)]l:l —p,—- ny .Aj(x):l

+fsy2t hsxy,z} (14)

where the first term is the binomial sampling variance of the
number selected from the n, offspring of sex y born to parents of
sex x, each of which is selected with probability p,+
(byy,2/M:) A iy which depends on the genetic merit of the parent.
For the population structure considered here, this sampling
should be hypergeometric because family sizes before selection
are constant and the sampling is without replacement.
Woolliams et al. (1993) approximated this by muitiplying the
term by (X ~ 1)/X. For random selection (b,,, 3= =0), this results
innp,(1—-p)X~DX" =YX~ YT—-Y)T Y(X — )X, this
is an approximation to the exact hypergeometric Varlance
YX YT~ Y)T—-1)"Y(X—1)X"*, which shall be used here.
(The correction to the terms involving 4, will be ignored until
the section ‘More accurate prediction of coselection of sibs’.) The
term fs,, , [equation (14)] is the probability of coselection of
full-sibs not attributed to the parents of sex x [which has already
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been accounted for via the bxy 2 V(Aj) in equation (13)], thus

F
fsxy,l = }"/ (”f - 1)(P1),2 - Px,z)Z;
where pp, , is the correlation between indices of full-sibs [equa-
tion (3)] and p, , is the correlation between indices of full-sibs
attributed to the breeding value of the parents of sex x [equatlon
(5)]. For a general correlation between sib indices p, pz is an
approximation to the additional probability of coselectlon of
two sibs of sex y (Robertson 1961). The coefficient (F/X)n,
(n; — 1) reflects that each of the n, offspring of sex y has (n, — 1)
opportunities for coselection with a sib and that a parent of sex x
contributes of F/X full-sib families. The term hs,, , [in equation
(14)] is the additional probability of coselection of half-sibs not
attributed to the parent of sex x; hs, , = 0 since in the hierarchi-
cal population structure there are no maternal half-sibs; and
analogoulsy to the full-sib co-selection, if py, is the correlation
between indices of half-sibs [equation (4)], then,

F({F 2 2
hsxy,2= =} }_1 nf(pH,Z—pm,Z)Zy

since there are (F/M)n, offspring of a sire which have probabili-
ties of coselection with their ((F/M) — 1)n, half-sibs. This term
was not introduced by Wray and Thompson (1990) or
Woolliams et al. (1993) because under mass selection the
covariance between indices of half-sibs is completely accounted
for by the sire, ie., pg,=p,, ,- Whilst this is true also under
selection on an mdex of (individual and) full-sib records, it is not
true for selection using an index of (individual full- and) half-sib
records.
Following from the above we can write,

1 Y \?
'“rz(xy).z + Grz(xy),Z ol T O—e(xy) +0, 9(xy) 15)
4\ X
where,
2 YT-YX—-1 F 1 2
O-e(xy) o+ —nf(nf - )(pD,Z - px,Z)Zy

XT-1 X X

F[/F 2 2
+E 3('_1 nf(pH,Z _px,Z)Zy’
and (16)

s F F({F N N
Ogiay) = }nf(nf_l)—'—} }_1 By 1Px2%y

X
=|1 _F;; Xsz[A_}(x)]

The first term of equation (15) is the mean squared under random

selection. The variance of(xy) is hypergeometric sampling vari-
ance appropriate under random selection plus covariances due
to coselection of sibs which are attributed to correlations arising
from the mate of the parent of sex x or to shared estimation
errors of family means. The variance a(g,xy represents covariances
of selection between 31bs which are attributable to the parent of
sex x. The form of ag(xy, in terms of b_, , will be used later.

The covariances of long-term contributions between male
and female descendants [in equation (8) with ¢ = 2 instead of o]
can be written similarly except that there is no hypergeometric
sampling term. By noting that each offspring has n full-sibs of
the opposite sex, it is found that,

I1IMF
Bem), 2 trix 1,2 + Orxm,xf),2 = Z[Y} + Oe(xm,xf) + O—g(xm‘,xf)]

an
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where
F
o-e(xm,xf) = }n;(pD,Z - px,Z)Zme
F(F
+ }(} - 1)”%(:0;1,2 — Px2)ZmZy
and (18)

F 2
Ogxmxf) = (}) ";Px,z ZpZy= bxf,z Dym,2 V(Aj(x))~

Substituting equation (15) and (17) into (8) [ignoring for the
moment that in (8) ¢ = co] results in

1 M
64M {4 + [Ge(mm) + ag(mm)] + 2|: ][ae(mm mf) + O_g(mm mf)]

M 1
+ [F] [o2mp) + Uj(mn]} G {4 + [ousn + oain]

F F
+ z[ﬁ] [Getrm.in + Tapmind + I:M] [o2tm + Oarm] } (19)

Evaluation of equation (8 ) witht = co. Finally let us consider the
case when ¢ = co. There are three important aspects to take into
account:

(1) Under random selection (i.e., b,, , = 0) the mean of the long-
term contributions of the ancestors is the same for t =2 as for
t = oo [see equation (9)] and so the first terms of equations (15)
and (17) remain unchanged from ¢ = 2 to t = 0co. The method of
Woolliams et al. (1993) shows that this holds also under selec-
tion. [This is term A3.1 of Woolliams et al. (1993)]

(2) Under random selection, the collective contributions of the
variances of the long-term relationships to rate of inbreeding is
increased by a factor of 2from ¢ = 2 to ¢t = oo. This does not imply
that each o7,,, doubles, but rather via dispersion of genes the
total contribution of 4, , for t = co is twice that of t = 2, where

LI(XY - XX X\,
)“x,t = ﬁ _M' Gr(m).t +2— M F O pxm,xf),t + F Orixf)t

(20)

which are the variance and covariance terms in equation (8). This
doubling has been observed in simulation when selection is at
random. It is also as intrinsic to the predictions of Wray and
Thompson (1990) and Woolliams et al. (1993) (in the method of
the latter it arises from the summation of terms that occur each
generation from ¢ = 2 onwards, but weighted by 2°~2). In selected
populations, simulation results show that A, , > 24, , where 4, ,
takes the form,

1 X\
Ay 2= 54X {(H) [Ug(xm) + UZ(xm)]

XX x\ , "
+ zﬂf [Ogemxp) T Oepemeny] + (f) [0acr) + ey ] -

21

Woolliams et al. (1993) show that prediction of 1, , can be
achieved by 24, , plus extra terms considered in point 3 below.
Under random selection (b, , = 0) equations (21) and (20) are
identical but, under selection, equation (21) also contains the
biy,z terms from equation (15). From Appendix 3 of Woolliams
et al. (1993) terms A3.2, A3.6, A3.13, A3.16 and A3.17 sum to
2(Am,» + 47,5} for mass selection.

(3) The doubling of (21) is insufficient to account for the cumula-
tive selective advantage and extra terms must be included. The

selective advantage from parent to offspring is includ-
ed in the ag(xy) and 0y, s terms which are functions of by, ,
[equations (16) and (18)]. Investigation of the method of
Woolliams et al. (1993) suggests that (by making some assump-
tions discussed below) the increase in selective advantage from
ancestor to descendant can be accounted for by replacing b, , in
og(xy) and o-mm <5 DY bxy «- Equivalently, this can be achieved by
multiplying ag(xy) by Bxy and 6y, xr) BY Bum B,y where B,, was
defined in equation (12).

Accounting for these points results in the prediction of rate of
inbreeding,

1 M
AF ~ oM {2 + Ge(mm) + Bm,,, g(m,,,) + 2<7>

: [o-e(mm,mf) + Bmm Bmf ag(mm,mf)]

M 2 2 2 2
+ (7;) [Oeinsy + By Ogems]

1 F
+ 32F{2 + 021y + Bly 0o + 2(M>

“[Getrm, 19y + BrmByrOotsm,sn]

+ E 2[0'2 + B2, 021
M e(fm) SmY g(fm)
Woolliams et al. (1993) also showed that the rate of inbreeding
predicted from long-term contributions should be corrected for

contributions from the base population. This correction also
applies to equation (22) resulting in a final prediction AF where

AF = AF(1 + 2AF). (23)

Relationship to equation (4) of Woolliams et al. (1993)

Equivalent terms to those in Appendix 3 of Woolliams et al.
(1993) have been derived for index selection (Wray and
Woolliams, unpublished notes), but their form is complex. The
complexity can be traced to the inequality between Cov(breed-
ing value of sire, index or offspring) and Cov(breeding value of
dam, index or offspring) i.e., t,, # 7, for I';. Under mass selection
(and I,) this asymetry between sexes does not exist. When terms
involving t,, and 7, are multiplied and accumulated over gener-
ations many more types of terms result than in the analogous
derivation for mass selection. This is illustrated by derivation of
by« for index selection in Appendix 2. Approximations invoked
for index selection in point 3 above, 1nvolve using t,, = ST for some
product terms. If the equations for (rg(xy), gty oe(xy), o, f)
and B,, [equations (16), but approximating YX (T

T-D"'(X-DX"1!to YX YT—Y)T™1, (18) and (12) are
substituted into equation (22) then the following equality results

1 M M
AF x 8M{1+Z liF(PD,z—Pm,z)‘f‘(l—’F“)

(Pr,2— Pm2)+ Pm,erzn:I}

1
+ Sf[l +2((pp2—ps2) + Pf,z_Q;)] (24)

4B D (p02— 720+ (902 — )

+ 20 (P2 08 + P 20],

where Q, = B,,i,/i. Under mass selection (where pp ;= pm 2 +
Pro PH2= Pm2 Qs =S ), equation (24) reduces to equation (4)



of Woolliams etal. (1993) with their K =i(S2 — 1)+
2[5 (ipCp +ips) + 2S5 1 (1 —c?)” 1approx1matedt021 (S% —
1) and where their equation (4) has ignored terms in T except for
4/32T.

Relationship to the equation of Latter (1959) and Hill (1979)

The form of equation (22) has been chosen for its similarity (and
equality when B, is set to unity) to the discrete generation
equation for the prediction of rate of inbreeding of Latter (1959)
and Hill (1979) which is based on variance of family size in one
generation for random selection. The variance of famlly size of
selected offsprlng of sex y from parents of sex x, axy, is equal to
ﬁ(m + ay(xy) here (and similarly for covariances). They derived
their equation from a genetic drift argument, where effective
population size is defined by the variance in change of gene
frequency. Their expression was derived to account for non-
genetic differences in fecundity and viability of offspring, o2 Tgtey) = =0,
rather than for selection on a heritable trait, although it has
been used as such (e.g., de Vries et al. 1990; Wray et al. 1990). The
two-generation Latter-Hill equation proposed by Wray et al.
(1990) is expected to be approximately equal to equation (22) but
with By, = byy,3/bsy,»- The Latter-Hill equation ignores some
higher-order terms which may be approximately incorporated
through the correction of equation (23). Like the equation (4) of
Woolliams et al. (1993}, equation (22) could be rewritten in the
form of the (one-generation) Latter-Hill prediction of inbreeding
plus a term describing the proliferation of lines from superior
ancestors at the expense of their inferior contemporaries.

Relationship with the equation of Robertson (1961 )

Equation (22) can also be related to the prediction of Robertson
(1961) for populations of full-sib families (M = F). Understand-
ing of his method has been hindered by an anomaly in the
derivation whereby the interpretation of the N used changes
from N =number of full-sib families (therefore the number of
parents is 2N) to N is the number of parents (Felsenstein 1989).
However, the (one-generation) result can be derived using the
method presented in Latter (1959). Robertson’s prediction for
one-generation can be obtained by setting M =F =N in the
Latter-Hill equation in which Poisson distribution of family size
and sampling with replacement are assumed. (Also there is
assumed to be no environmental correlation between full-sibs so
that p = pp = p,, + p;). Robertson argued for a two-fold increase
in selective advantage from generation 2 to infinity (B = 2), but
which Wray and Thompson (1990) argued should be B= B, in
the notation of this paper. Robertson’s prediction is,

1
=— B2{?
AF 4N(1+ i’ p),

which based on a more thorough theoretical derivation equation
(22) with M = F reduces to,

1
2
AF = 4N[1+ (1+ B%i? p:|

More accurate prediction of coselection sibs
The use of z,z,p [e.g, in s,y , and hs,, , in equation (14)] is a

first-order approximation to the probability of coselection of a
pair of sibs of sexes x and y over and above that due to chance
alone. This can be more-accurately predicted using the approxi-
mation of Mendell and Elston (1974),

{@[(1"" )l/z]px pxpy}
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This expression is well-defined for x = y. However, when x # y,
whilst the probability is symmetric in x and y, the expression is
not and both forms are approximations to it. Mendell and Elston
(1974) show that accuracy decreases with i so the preferred form
has x =m and y = f. Under index selection when correlations
between sib indices can become very high, the use of this more-
accurate prediction of coselection of sibs is important.

When x =y, both first-order and second-order approxi-
mations to the probability should be multiplied by
(Y —1)/Y (TAT —1)) in an attempt to account for selection
without replacement.

Populations in which family size is large relative to the
number selected

In the predictions of variance of long-term contributions (or
variance of one-generation family size) discussed above,
variances have been increased over and above random selection
by considering coselection of sibs. This has been caiculated as a
probability of selection of a pair of sibs multiplied by the possible
number of pairs available for selection, without imposition of a
constraint of total number selected. In general, this approxi-
mation is good ( see Results section, Table 2), but when family
size available for selection is greater than the number selected, for
example (F/M)n,> M, then highly-inflated probabilities of
coselection and variances can arise, particularly when the corre-
lation between selection criterion of sibs is high. At the extreme, if
pr =1, then all M males will be selected from a single half-sib
family. Wray et al. (1990) discussed this problem and for these
situations proposed the use of p,, instead of p,, where
Pm=(L— pe)pp, + py(F/M)n,/T. The full impact of this ap-
proximation affects several of the equations presented in this
paper and their adapted form is given in Appendix 3.

Simulation

Predictions from equation (23) are compared to rates of inbreed-
ing observed from simulation. Simulations for mass selection are

* those presented in Wray and Thompson (1990) based on 100

replicates. For index selection, simulations are similar except
that selection is based on either Iy or I, Populations have
M =20 males, F = 20, 40,200 females with n, =3, 6 offspring of
each sex per dam Heritabilities con51dered are h2 =10 ,0.1,
02 04 0.6,0.99, aP o=1 and common environment variance
o¢ /cr = (. Heritability values close to zero and close to unity
have been investigated so that the predictions can be tested at the
extremes where it is possible to postulate the way in which
selection is operating. When heritability is exactly zero, index
weights are null and selection is at random. But when heritability
is close to zero (h* =107°) selection on I (or Ip) is close to
selection on the family mean since the correlation between sib
indices is high. When h? =0.99, selection using any of the three
indices will result in selection of the same individuals. Other
populations simulated have M = F = 20, with np= 3,6,12,20
under mass selection for traits with h2 = 1075, aP o=1 but with
o2 = 0.00,0.20,0.60, 1-10~¢. Within the simulations many statis-
tics are calculated which are checked with predictions. These
include variances of breeding values of selected ancestors (about
the mean of the selected group), correlations between selection
criteria of sibs (born in generation 2, calculated by analysis of
variance), probabilities of coselection of sibs, variance of family
size from parents (born in generation 1) to offspring, b, ,, total
sums of squares of long-term contributions and rates of inbreed-
ing. Rates of inbreeding presented are the average of those
observed from generations 5 to 14. Simulation results are the
average of 1000 replicates for F = 20, 40 and 500 replicates for
F =200. An example calculation is given in Appendix 4. .
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Results

Variances and correlations

Predicted values and prediction errors of variances of
true breeding values of selected individuals born in
generation 1 about the mean of the selected group
[V(A4;.,)] are presented in Table 1. Predictions agree
well with simulated values (maximum error 10%). In
comparison, calculation of the variance of breeding
values about the unconditional mean [V(4%,)] can
lead to overestimation by as much as 209 (data not
shown). Correlations between full and half-sib index
values (pp, , and py ,) are also presented in Table 1;
predicted values are those described in the notation
section using o2, ; and calculated by Appendix 2.
Predictions of correlations are also accurate (maxi-
mum standard error of simulations is 0.007) although
correlations of 0.8 or greater tend to be underpredicted.
Correlations shown are between sibs born in gener-
ation 2; these correlations may be substantially lower
(particularly for high h?) than correlations between sibs
born in generation 1 (before selection).

Predicted values and prediction errors of variances
of family size (of offspring born in generation 2 from
male parents) are presented in Table 2. Predictions of
(co)variances of family size from female parents show
smaller prediction errors (data not shown). Probabili-
ties of coselection were also examined but these show a
similar pattern to the variances of family size. Thereis a
tendency to overpredict (co)variances of family size
from male parents when selection uses I and in situ-
ations where n, and py are high (ie, h? low). The
overprediction becomes particularly acute in situ-
ations where (F/M)n; > M and py, is high. Predictions
using p,, and the equations of Appendix 3 are also
presented, which do remarkably well given that the
adjustments are based on heuristic arguments.

Expected long-term contributions

Predicted values and prediction errors of b, , and B,
fequations (11) and (12)] are presented in Table 3.
When selection uses I, (or Ip, data not shown) the
simulation results are in good agreement with the
theoretical result that B, is independent of x, the sex of
the ancestor (since 7,, = 7). This is not true for selection
using I, where for hierarchical populations, breeding
values of male ancestors are more highly correlated to
their offspring’s index values than are female ancestors
(v, > /). If this difference is ignored and an average 7 is
used when selection is on I then serious errors in the
prediction of rate of inbreeding and its components
arise (data not shown). Simulation results show that
the increase in long-term contributions from gener-

ation 2 to oo is greater for female ancestors (B, > B, ),

this is expected from evaluation of equation (12) which
can be shown to be a function of t/7,. For two popula-
tions with the same structure and heritability, but
where selection has used different indices, it is found
that in the population where b, , is higher, then B, is
lower. The predictions of b, , are generally good
(shown only for b, ,), although they tend to under-
predict when h*=0.99. For populations where
(F/M)n, > M, predictions of b, , are too high. Predic-
tion of b,,,, , using the results which depend on p,, give
satisfactory predictions. Predictions errors in B, are
found to be robust compared to prediction errors in
b,,andb, .

Rates of inbreeding

Predicted values and prediction errors for rates of
inbreeding are presented in Table 4. In some simula-
tions, particularly for high h?, rates of inbreeding were
observed to be somewhat higher in generation 2 (and
sometimes 3). For example, when h* = 0.99, the first
round of selection (where selected individuals tend to
come from a few good families) results in a high initial
rate of inbreeding. In subsequent generations, the rate
of inbreeding is less as a resuit of selection of the best
individuals across families that are genetically less
variable. However, in all cases investigated, inbreeding
reached an approximately steady rate by generation 4
and over the generations included in the average. For
selection on Iy, the prediction error of the rate of
inbreeding, as calculated from the total sum of squares
of long-term contributions, accumulated within the
simulation, [equation (6) with the correction for base
contributions, equation (23)] is also presented. This
demonstrates that under index selection where rates of
inbreeding can be much higher than under mass selec-
tion, the prediction of the rate of inbreeding via long-
term contributions remains appropriate.

Predictions of rate of inbreeding for mass selection
are accurate when F > 100 (maximum error of predic-
tion 7%), but have a tendency to underpredict for
F <40 (maximum error 6%). This is the same pattern
as found by the approximation equation (4) of
Woolliams et al. (1993). (Mass selection predictions
presented here use the Mendell and Elston (1974)
probabilities of coselection, whereas Woolliams et al.
used only the first order approximation for their
tabulated results.) Predictions are also accurate for
selection on I, but with a tendency to overpredict at
low h? (high p;) (which partially reflects overprediction
of one-generation variance of family size, data not
shown), with maximum errors of 67, for n, =3 and 13%;
for n; =6. The predictions for Ij; are accurate provid-
ing that h* is greater than 0.2 and M > (F/M)n,, but
may overestimate otherwise. The overprediction can
be as much as 1149, (M =20, F=200, n,=6,
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Table 4. Rate of inbreeding x 100. Predicted (P), predicted-simulated (P-S) and percentage errors [ 100¥(P-S)/S] values for populations
with M = 20 males and F females and n offspring of each sex/female and with selection using Ip, I, or I'y. For selection using I, (S*-S)
represents the difference between rate of inbreeding calculated from equation (23) using AF from equation (6) (where Y 12 is calculated in
the simulation) and rate of inbreeding from inbreeding coefficients (calculated in the simulation)

F Ry h? I, I, Iy
P P-S %Error P P-S % Error P S*-§ P-S %Error ()*
20 3 0.00° 1.05 —-002 -—19 2.57 +0.14 +5.8 257 —003 +0.14 +58
0.10 1.18 —005 —40 2.68 +0.07 +27 2.68 +001 +007 +2.7
0.20 1.26 —-007 —-52 2.58 +0.03 +12 2.58 —001 +0.03 +12
0.40 1.36 —006 —42 2.29 0.00 0.0 229 +0.03 0.00 0.0
0.60 141 —-009 -6.0 1.99 —0.02 -1.0 1.99 —001 —-002 ~1.0
0.99 1.37 0.00 0.0 1.38 +0.01 +0.7 1.38 +004 +0.01 +0.7
40 3 0.00° 0.84 +001 +12 1.92 +0.07 +338 242 —-004 +0.14 +6.1
0.10 0.97 —001 -10 2.14 +0.03 +14 2.52 000 +0.11 +4.6
0.40 114 —-004 -—33 1.89 —0.03 —1.6 2.01 000 +0.02 +1.0
0.99 1.09 +001 +09 1.10 +0.02 +1.9 1.10 +0.07 +0.02 +19
6 0.00° 0.89 +001 +11 4.02 +046 +129 5.28 —008 +0.82 +18.4
0.10 111 —-006 5.1 4.37 +0.36 +9.0 511 —0.08 +0.62 +13.8
0.40 1.42 —008 —53 3.20 +0.07 +22 3.36 +0.04 +0.18 +5.7
0.99 1.26 +0.07 474 1.27 +0.05 +4.1 1.27 +0.08 +004 +33
200 3 0.00° 0.67 +001 +15 1.16 +0.03 +2.7 4.27 —003 +134 +45.7 (+20.5)
0.10 0.81 —-001 —12 1.56 +0.03 +20 331 —-001 +0.74 +28.8 (+16.3)
0.20 0.90 +0.04 +47 1.60 —0.01 —0.6 2.58 +003 +034 +152 (+8.0)
0.40 0.99 —-001 -—-10 1.48 —0.03 —2.0 1.84 +002 +0.08 +45 (+1.1)
0.60 0.99 0.00 0.0 1.29 —0.01 —08 1.41 +0.01 4001 +07 (=0.7)
0.99 0.83 +0.02 425 0.84 +0.02 +24 0.84 +0.30 0.00 0.0 0.0)
6 0.00° 0.68 0.00 0.0 2.11 +0.18 +93 9.65 —007 4513 41135 (+22.6)
0.10 0.89 002 +22 2.81 +0.18 +68 5.58 +0.08 +1.90 +51.6 (+16.8)
0.20 1.03 0.00 0.0 27 +0.10 +338 4.04 —0.06 +084 +263 (+69)
0.40 1.15 —-002 -—-17 2.26 +0.07 +32 2.66 +001 +0.30 +127  (+34)
0.60 1.14 —005 —42 1.77 +0.02 +12 1.89 —005 +0.09 +50 (0.0}
0.99 0.89 +002 +23 0.90 +0.02 +23 0.90 +0.06 +002 +23  (+23)

® Percentage errors in parentheses are achieved when using p}, instead of p,,, see section ‘Populations in which family size is large

relative to number selected’
b hz — 10—6

h* = 107°). The use of p/, leads to improved predic-
tions with maximum errors of 21%; for n, =3 and 237
forn,=6.

Errors in the prediction of the rate of inbreeding

Errors in the prediction of the rate of inbreeding for
index selection are greatest when h? is close to zero. In
this case equation (22) reduces to the Latter-Hill equa-
tion. As such it is independent of any errors in predic-
tion of selective advantage and depends only on the
variance of one-generation family size. Prediction of
the variance of family size is fairly good when the
equations of Appendix 3 are used for populations of
large family size relative to the number selected. In-
deed, if variances of family size from the simulation are
substituted into the Latter-Hill equation then over-
prediction of observed rate of inbreeding is found; for
example for Iy, F =200, n, =6 the predicted rate of
inbreeding using variances from the simulation is
0.0558, which is close to the prediction using predicted
variances of 0.0560 and which both overpredict the

observed rate of inbreeding of 0.0452. (Even without
the correction used here, equation (23), the Latter-Hill
equation still overpredicts at 0.0508.) When M =F,
index selection for a trait with near zero heritability, is
equivalent to mass selection for a trait with near zero
heritability and non-zero o2 /o;. Further investigation
of the problem was conducted with simulations of
populations of this type; 67, .and g, . . . from these
are presented in Table 5. According to the theory used
in this paper A, ,/A,,=2 where 1 , is defined in
equation (20). However, it is found that when o7 /67 is
high, the ratio is considerably less than 2. In this case
selected parents are all chosen from a minimum of
families. The problem is found to be more apparent
when family size is large relative to the number se-
lected. Indeed, in the most extreme case considered,
when h?=107°, 62/62=1-10"% and M=F =n, =
20, all offspring are chosen from a single family and the
variance of contributions from ancestors to descend-
ants cannot increase over and above that from parents
to offspring. The ratio in Table 5 is shown to be unity.
In this example, the observed rate of inbreeding is 0.191
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o (after an initial rate of 0.250), identical to the classical

S laneo result for full-sib mating (Wright 1931). The rate of

& |SSE32 inbreeding calculated from the observed long-term

g contributions [equation (6) with correction (23)] is

= 2 0.161. Whilst the rate of inbreeding calculated from
dlagewn X . > : .

@ w1 SE5S observed or predicted (assuming family selection) vari-
g o ances of family size using the equation of Hill (1979)

g S [which is equivalent to the prediction using equation
i 1838 (22)] is 0.243 [or 0.361 after correction by equation
-=
EN RO R h

S| =l% |ses=< Discussion
(=]

N
l % R, The prediction of rate of inbreeding presented here can

I slaaza be divided into three steps:

i g (1) Equality of rate of inbreeding calculated by identity
3 Bl mmonm of descent to equation (6) plus (23).

3 RIS b2 it p (2) Equality of equation (22) to (6) which inciudes (i) the
g o assumption (used directly in this paper, but also impli-

g E - cit in Wray and Thompson 1990 and qulliams et al.
'*‘g K3 §§g g 1993) that the contribution of 4, , [equation (21)] to

8 rate of inbreeding increases by a factor of 2 or more

g o |g fromt =2tot = oo, and (ii) the approximation of terms

2|2 aa8a which describe the contributions of the expected long-
é:; 1% | coca term selective advantage when selection is on a heri-

o - table trait.

3 S looxe (3) Prediction of the components of equation (22), i.e.,
N Sl P variances of one-generation family size and the long-
g <o term selective advantage terms.

S g oRr= Errors in prediction of the rate of inbreeding de-

I T | Sso - fined by identity by descent can occur in any of the
E 2 three steps. The extreme example of M = F = n, =20,
2 floman h* =1079, ¢* = 1-10~% with mass selection highlights
z 2233 the first of these errors. In this example, selection is for
8 the best full-sib family and the rate of inbreeding is that
E; 2 appropriate to repeated full-sib mating. It shows that
£ Ll 8A%A g the errors in the prediction of rate of inbreeding are not
& sleyeess = confined to the situation of selection on a heritable t1jait
& A % but can be concerned with constraints of population
2 2285 2 structure. The rates of inbreeding defined by squared
2 i ek ke c contributions and by identity by descent may not be
B g E identical in all circumstances since approximations are
= Elve oo & invoked in the proof of equivalence given by Wray and

3 v |33 T ’qf Thompson (1990). However, for the range of breeding
§ a = programmes investigated in T'able 4, which mgludes
ot ;‘? g% some population structures which could be considered
g 1882 | & s extreme for livestock, the equality between identity by
kS B & descent rate of inbreeding and equations (6) plus (23) is
8 b b good and the prediction of long-term contributions as
§ Oll N? L% éig,ﬁ; ameans of predicting the rate of inbreeding remains an
S A Rl TR appropriate goal.

.: ;g "l"‘ In some situations, errors in the prcdicﬁcion of rate
= coocd b§§ ) of inbreeding occur at stage 2, where the ratio A /4, ,
S S3833 1 aas [equation (21)] is less than 2. In the extreme example



above, of selection of a single full-sib family, this ratio is
1, as the variance of long-term contributions from
ancestors to descendants achieves its maximum after a
single generation. Singe it is at stage 2 that the equality
of equation (22) and the Latter-Hill equation is found
(when selection is for a non-heritable trait), then errors
arising at stage 2 are equally applicable to the Latter-
Hill equation. Such errors have already been discussed
by Wray et al. (1990) in comparison of the Latter-Hill
prediction of inbreeding with the approach using the
maximum eigen value from transition matrices
(Woolliams 1989). Errors in stage 2 are less easy to
detect explicitly when selection is on a heritable trait,
but are likely to contribute to the prediction errors
observed in Table 4, particularly when the family size
available for selection is large relative to the number of
parents and when the correlation between selection
criteria of sibs is high.

Errors also occur at stage 3, in the prediction of
variances of one-generation family size (Table 2) and
long-term selective advantage (Table 3) (errors in the
latter reflect errors in the former). The prediction of
variances of family size assumes selection across fami-
lies, but in examples when family size prior to selection
is large and correlation between sib records is high,
selection tends to be for selection of the best families, in
which case the variance of family size after selection is
less than predicted. A method has been presented to
account for selection of half-sib families, but selection
of the best full-sib families within half-sib families has
been ignored.

For the populations investigated in this paper
(Table 4), rates of inbreeding are underpredicted when
selection is on phenotype alone, this is expected as the
terms presented here are an approximation to the
derivation of Woolliams et al. (1993). Under mass se-
lection, the errors in steps 1-3 discussed above, are
unlikely to occur for population structures relevant to
livestock breeding. However, these errors can become
important when selection is on an index which includes
records of collateral relatives, ensuring that the corre-
lation between the selection criteria of sibs is high. In
these cases, there is a tendency for overprediction of
AF, which is found despite the fact that (small positive)
terms are ignored in the derivation. The correction to
the rate of inbreeding for base contributions (equation
(23)] sometimes causes a good prediction of AF to
become an overprediction, the good prediction before
the correction can be attributed to compensatory er-
rors.

In summary, whilst the goal of prediction of rate of
inbreeding via long-term contributions remains valid,
the method presented here to achieve this prediction
does not fully acount for constraints upon the variance
of long-term contributions arising from the population
structure. Under most circumstances the absence of
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such a constraint is not an issue, but it becomes import-
ant when correlations between sib indices are high
(> 0.8) and family size is large relative to the number
selected.

In many practical breeding programmes, a restric-
tion is placed on the number of offspring selected per
full-sib and half-sib family. Such a restriction would
influence the prediction of 67, 5, 062+, 024y).» and the
equivalent covariances, and the linear prediction of
number of offspring selected per parent. However, the
problems in the assumption of the increase of long-
term contributions from ¢ = 2 to t = oo are unlikely to
arise.

When selection in a hierarchical popuiation is on
an index which includes half-sib records, a sire is more
highly correlated to the index values of his offspring
than are his mates. This results in an asymmetry be-
tween the contributions from male and female ances-
tors to the evolution of the rate of inbreeding which
does not arise under mass selection or when full-sib
records alone are included in an index. It is important
to account for this asymmetry in the prediction of
inbreeding when selection is on I One-generation
selective advantage (b, ,) is greater for Iy vs I, and I}
vs I p, whereas the increase in selective advantage (B,,)
shows the reverse pattern. Thus, one-generation pre-
dictions of rates of inbreeding are expected to under-
predict the observed rate of inbreeding to a lesser
extent when selection uses sib records compared to
mass selection (examples are given in Wray 1989).
Under mass selection and with no common environ-
mental effects, the correlation between the selection
criteria of sibs is entirely of genetic orgin, whilst under
selection on family indices, the correlation is partly of
environmental origin. Thus, the relative contribution
to the total inbreeding of the long-term increase of the
genetic component must be smaller for selection using
family indices (Wray et al. 1990).

Prediction of rates of inbreeding when selection is
based on estimated breeding values calculated by
BLUP (best linear unbiased prediction) could be
achieved using a selection index, an extension of I, but
including estimated breeding values of the sire, dam
and other mates of the sire (Wray and Hill 1989).
However, overprediction of rates of inbreeding will be
expected as BLUP induces even higher correlations
between sib indices than I Use of the predictions
obtained here for I, although not exact, would be an
improvement on what has been used in the past.

This paper represents the completion of the second
stage towards the joint description of progress and
inbreeding in terms of the same predictable pa-
rameters. Woolliams et al. (1993) derived terms which
describe the expected proliferation of lines and show
how inbreeding can be related concisely to these terms
in addition to the variance of family size in mass
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selection. This paper extends this theory to the import-
ant case of index selection and could be adapted to other
situations, such as sex-limited traits, non-hierarchical
population structures, and variances in physical family
size prior to selection (the subject of a later paper).
It is now possible for a wide range of circumstances
to assess quanta of information for their value in
promoting progress and their value in promoting
inbreeding.

Appendix 1. Expression for AF partitioned for male
amd female ancestors

Under the assumption of constant rate of inbreeding each gener-
ation, Wray and Thompson (1990) showed that the rate of
inbreeding can be expressed as,

1 i M+F )

A e Con Gt = gar iy B

where C;, , is a square matrix of order M x F of relationships
between ancestors born in generation 1 and their descendants
born in generation ¢, which result from the Mendehan samplings
received by the ancestors. The elements of Cm »Ciq,yareall the
same when ¢ is large, thus the pre- and post-multiplication by the
unity vector 1 sums all the elements and division by (M + F)?
gives the average. If the order of ancestors is males then females
and the order of descendants is males then females, then C, ,
can be partitioned as,

C C
C = mm mf
T |:Cfm Cff:l

and CIT(U,C”L,, can be written as,

[c,ﬁmcmm +ChCrp CrnCon+Cr,C ,,}
T T T T .
ClCom+C1;Cp € Cop +CHCyy

Since all elements are equal, the four blocks can be averaged separ-
ately,

1

4(—MTF_)21TCT“’”C“1’”1

1] 1
= Z[WIT(C':’”C""” +CrCr1
2 T T T
+ WI (CrCs + C1,Crp)l

1
+E1T(c;fcmf + cffc,f)l].

One reason that all elements of Cf(l,,)Cl(L,) are identi-
cal is because the rows within each C,, are identical (Wray and
Thompson 1990), thus C,, can be represented by X 1dentlcal column
vectors. The " element of a column vector of C,, is zrl(xy,, where
Tisy,e 18 the additive genetic long-term contributxon between (the
Mendelian samplings of) ancestor i of sex x and its descendants of sex
y and the  is the value of the Mendelian sampling of the ancestors.
Thus, equation (7) follows.

Appendix 2

Derivation of V(Ai(x))=4aix,1. V[A4;x] is the variance of se-
lected indivuals born in generation 1 of sex x (A},)) about the
mean of all the selected indivuals of sex x (A},,).

V[Ajm]=VIAfn — Ajn] = V[Afx]—VI4}n]
V[A%s] —‘(1 —k,p?) (Pearson 1903), p2 = g79/07.o and
V[An]= [V[A,(x)] +(X = 1)Cov [Afiy, Af 1]
(Woolhams et al. 1993) where

Cov [Afixy AT ] = P Chsy + Pl Chice-

Ph (Ph) is the probability of two selected individuals being
full (half) sibs calculated as the probability of coselection of a pair
of sibs (Mendell and Elston 1974) multiplied by the number of
sibs,

Pp, I, —Vy
Pt 00| 2505 |

F Prile—V
Py~ —=—1|n@ ZELx_* |
e <M )”’ [(1—p%,.1kx)“2

Ch(Chy) is the covariance between breeding values of full (half)
sibs after selection (see Tallis 1964, p228),

C;(x) = Ui,o l:ap + ¢V v pp,1 1000 — pp,14p)

+ up(up — Pp, lp)]/(pxPD(x)) + le +2pi,

—v, 1— . *

and ®(v,, v, pp ;) is the frequency of a bivariate normal with correla-
tion pp; where both truncation deviates have value v, (so
D(v,, v pp.1) = e ¥ 7950 [2n(1 — p} )*2]). ap is the correlation
between the breeding values of generation 1 full-sibs before selection
(a,=7%) and uy is the correlation between the breeding value of an
individual with the index value of its full-sib (before selection). For
index I,

i3]
I e

To calculate Cie replace all subscripts of D for full-sibs by H for half-
sibs, a;; = and

1M
= {5 g 0252
1l M
+ Z[F(ﬂ3 =B+ ﬁB:I}UA,O/UI,O'

Derivation of by, , and b, ..

Wray and Thompson (1990) showed that b, , can be represen-
ted as byy » = 1. B2, 410, = NcBs2,12 Br2, 4y, Where st and It are the
selection scores (1 if selected, 0 otherwise) and index scores of
individuals of sex y born in generation ¢, B represent regression
coefficients and B, ;, ~ z,/0;,.. The coefficient By, 4, = 11, and

i(x)
thus by, » ®31,7,2,/07 5.



Further, Wray and Thompson (1990) showed that,

1/ Y Y M F
bxy,t =§<_bem,r—1 +Fbxf,t~1 +}bxmy,t+}bxfy,t>

(A2.1)

where b, . is the regression coefficient which accounts for the
additional selective advantage of the ancestor to the descendant over
and above the selective advantage from the ancestor to the parent of
sex w in generation t — 1.

Similar to the case for b, ,, b,,,, 5 can be represented as

Drvwys X1, Bsa s ﬂ13,A,-(x)

where the regression coefficients represent regression over and above
that already accounted for between x and w, i.e., after accounting for
the selection of w (as well as selection of x). The covariance between
grandparent of sex x and grandoffspring before accounting for
selection of w is 37, ¥, and

ﬁI3,Ai(x)

z[iTwa_ 1. V37,07 (1 — 5T,k —;ffkf)kw]/
GI(I_ZTm m 4Tfk )

GASK
Ve— 2 1.2 1.2 kW
o1(1 —5Tmk, —277k;)

where V, = V(4,,), the variance of the breedmg value of the ances-
tors. Th1s can be approximated as B3 4. ~4rw(1 7,k,,). Thus
Doy s ™ Lyt (1=t <k,)2,/01 5. Using similar derivations and ap-
proximations it can be shown that for 1 > 4,

By ¥ 3,03 (1 = TR [0 — k)]

(1~ 1k )z /oy,

(A2.2)

In this equation %(1 —1.k) is the reduction accounting for the
selection of descendants born in generation 2 averaged over males
and females (hence the average k) but dependent on the sex of the
ancestor. The (1 —tk) terms are reductions due to intermediate
generations of selection, averaged over both sexes of descendants;
hence the term involves average k and average . 3., is the coefficient
of relationship between w and y and (1 — tk,,) is the reduction due
to selection of sex w averaged over male and females in generation
t—2.
Thus in summary we can write,

1
bxwy,3 & Enw’cwi(l - Tka)zy/aI,s’

bxwy,z ~ Enwrwc; Cy ¢ 4-Zy/o-l,v
where ¢, =3(1—1k,), c.=1—1k), c=3%(c,+ ¢/ As in
Woolliams et al. (1993) it will be assumed that o; , will be close to its
equilibrium value.

Following Wolliams et al. (1993), equation (A2.1) can be repre-
sented in matrix notation by,

M F
l)x,t = Dbx,t—l + E(bxmm,t bxmf,t)T + ﬁ(bxfm,t bxff,t)T:

12 12M/F
12F/M 1)2
describes the dispersion of genes through the population from gener-
ation to generation in the absence of selection and has the property of
idempotency (D? = D). By analogous derivation to that presented in
Appendix 1 of Woolliams et al. (1993) it can be shown that,

1 [ (Myx i M/X
b=t [ o )|

where b, ,=[b,,, b.;,]7 and D is l: ] Matrix D
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1 _,]. , M/X
b, , =501 1|:l('cx +d .+ cde,4)< FiX )

i M/X
+d,cct* lf" / fort >4
i F/X

where S, =3"_o¢’, d=%z,c =t TCp) and d, —2[Tmz(1 k,)
+t f2(1 —1,.k,)]. Following from this we can write in summary,

1Y
Tl

xy,2 x%y
26, X

Y
— (it +iyd,)
201,2X

by

Y , ,
oyt sz(irx +id, +idc. S, 4 +i,cdd™*)
1,2

! Y(' +id, +idc,S )
— 1 c
ZGI’ZX 1Ty x T LACLD

L
where S, =(1 —¢)~* =2(1 + k1)~ L. Substitution of expressions of d,
d,, ¢, and S, into b,, ,, results in equation (11).

Appendix 3, Adaptation to equations when
(F/Myn.>M

The adaptation of equations in this situation affects only males
selected from male parents. Therefore, in generation 2, only
regression coefficient b, , is affected, resulting in b, .~
1
207,
fected via by ¢ terms [see equation (A2.1)], and it can be shown

T,.ir However, in subsequent generations all b, are af-

that b, ,, & (z(x)'c + G+ Gcn,) where iy, is the selec-

1
207, X
tion intensity appropriate to pj,, iy =1if x = f and G +i i) if
x=m G= 7(.91,,1 +dig), G, = E(lem +d,ip), ¢ =7(rmcmlm/zm

tp¢p) and &, = 3(1,,3(1 — kyy T, )i /i + 7, 5(1 — k7)1
Changes to the variances required for equation (22) are

2 1 T-M
O (eymm = I_M T_1 +1,(np— DU oy
+ L1 U;

“\7—*n e)mm

Pul\bm )

1/1
2 ,
Cgymm = 7\ 77— +nm(” _1) U mm
(9) |:pm<pm f> J :| (g)

1 ,
Oeymmms = Pty U)o, -+ ”m<p—/ =17 U mmms
m

nm
Ogymm,ms = o Ugymm,ms

where the U terms represent the Mendell and Elston (1974) probabil-
ities of coselection of sibs, the ’ implying the use of p,,, i, k., and v,,,
and the use of p; + pp,, py. OF p,, are implied in U, (or Uy 1),
U symm (gr U ymmms) O U yum OT U gy m f) r’espectively. These terms
are equivalent to those in the main text if p,,, is replaced by p,,.
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Appendix 4. Example

For an example population M =20, F =200, n, =6, h%=04and
o, /a,, =0 with selection using I, then terms described in the
first section of the methods are n,, = 60, T == 1200, p,, = 0.0167,
pr=01667, v,=2129, v, = 0.967, z,=0.041, z,=0.250,
i, =2.485, if—-1499 i=1992, k,= 0885, kf_0797 and
k=0841. 1f 070 =1, then 030_04 %m0 =450 =0.1 and
o aw=02. Index parameters are f,=0250, f,=0.700,
B4 =0.957, 010—0226 7,,= 0957, 1,=0.726 and 7=0.841.
Calculation of V[A4;y1 descnbed in Appendix 2 requires the
followmg p=0752, py,=0436, o= =0.779, Pfm =0.126,
Phn=0367, Pp,,= 0388, P§ )—0610 ug= 0328,
up = 0.586, Ciim= 0.007, CH(D = 0 013, Chm= 0.058 and
Ci=0.060. From these V[ Aj,,]=0.200, V[ A%,]=0220,

V[ Afm]1=0018, V[A%,]= 0,003 and V[A](m%]_ 0.182,
V[AM)] 0.217. Then, since JA“—4 VI[Ajml aAm1—0046

UAf,l =0.054 and ¢% , =0.300. From equation (1) a,,z =0.152
and from equation (11) by = 3.05, by 2 = 18.41, by, , = 0.23,
brr2 =140,  bpp =269, Dbur,=2685 « bpy . =023,
bss =234, B, are reported in Table 3. For offspring born in
generation 2, correlations are: py,=0.308, pp,=00671,
Pm2=0.275, ps, =0.188 from equations (3)—(5). Variances and
covariances of contributions from parents of sex x which are not
attributable to the selective advantage conferred by the parent
of sex x are: 0'(22),,,,,,: 245, a(ze)m y = 28.52, G-(Ze)mm,m =437,
02y rm =021, 0py;; =220 and oy m ;= 0.30 [equations (16)
and (18)]. Variances and covariances of contributions from
parent to offspring which are attrlbutable to the selective advan-
tage of the parent are: a(g)mm =284, o(g),,, ;= 08.52, Olgpmmms =
13.04, 64y ym = 0.01, or(g),, 0.38 and 6y)m, s = 0.08 [equations
(16) and (18)]. These variances and covariances when summed,
€.8, Ofgyay + a(zg)xy, give the one generation variances of family
size presented in Table 2. The rate of inbreeding as evaluated by
equation (22) is AF = 0.0254 and with correction [equation (23)]
AF =0.0267. In this example M < n,, and therefore the adapta-
tions presented in Appendix 3 apply. Thus, p,, = 0.0269,
i, =2.307, Qg = 1.903, i =1.992, v, = 1.928, k,, =0.875. For
biyer Gu= 0.077, G, =0.156, G=0.116, ¢, = 0.155, ¢, = 0315
and &=0235 resulting in b, =283, bu.=2.57,
Bpgoo=2571, bppmo, =023, by, =233 Variances and
covarlances of contributions, Wthh differ from those above, are
a(e)m,,, =2.21, 6 (gymmms = 3.40, O-(g)mm = 3.47 and 6Zmmmy = 11.90.
Finally, AF =0.0233 and with correction (23) AF =0.0244.
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